• Title/Summary/Keyword: Cyclase

Search Result 359, Processing Time 0.023 seconds

Inhibitory Mechanism of Propranolol on the Effects of VIP in Peripheral Blood T-lymphocytes of Rat (흰쥐 말초혈액 T-림프구에서 Vasoactive Intestinal Polypeptide의 효과에 대한 Propranolol의 억제 기전)

  • Ahn, Young-Soo;Choo, Sung-Yee;Kang, Dong-Won;Lee, Sang-Hun
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.219-231
    • /
    • 1995
  • Vasoactive intestinal polypeptide(VIP) and ${\beta}-adrenergic$ agonists have immunomodultory effects on the peripheral blood T-lymphocytes of rat through their own receptors. Both of them utilize the same signal transduction pathway. That is, the stimulatory guanine nucleotide binding protein(G protein) mediates the receptor-adenylyl cyclase coupling, producing intracellular increase of cyclic adenosine monophosphate(cAMP). In the previous experiment, propranolol, a ${\beta}-adrenergic$ receptor blocker, inhibited the VIP-induced protein phosphorylation in lymphocytes. However, propranolol could not block the effect induced by forskolin. Therefore, this study was designed to elucidate the mechanism of the inhibitory action of propranolol on the effects of VIP. Using peripheral blood lymphocytes of rats, the effect of propranolol on the receptor binding characteristics of VIP was observed. And the effects of propranolol were compared to the effects of timolol on the cAMP increase induced by isoproterenol, VIP or forskolin. The results obtained are as follows. 1) Receptor binding study showed no significant differences in the affinity or density of VIP receptor between the control and propranolol-pretreated groups. 2) VIP-induced increase of cAMP was inhibited by propranolol, but not by timolol. 3) Both propranolol and timolol suppressed the isoproterenol-induced cAMP increase. 4) Propranolol also inhibited the histamine-induced cAMP increase. 5) Propranolol did not inhibit the increase of cAMP stimulated by forskolin. 6) Lidocaine did not block the VIP-induced cAMP increase. These results show that the inhibitory mechanism of propranolol is not related to ${\beta}-adrenergic$ receptor or its membrane stabilizing effect, and it is suggested that propranolol can block the effects of VIP by inhibiting the intermediate step between the VIP receptor and adenylyl cyclase.

  • PDF

Altered Regulation of Renal Nitric Oxide and Atrial Natriuretic Peptide Systems in Lipopolysaccharide-induced Kidney Injury

  • Bae, Eun-Hui;Kim, In-Jin;Ma, Seong-Kwon;Lee, Jong-Un;Kim, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.273-277
    • /
    • 2011
  • Nitric oxide (NO) and atrial natriuretic peptide (ANP) may induce vascular relaxation by increasing the production of cyclic guanosine monophosphate (cGMP), an important mediator of vascular tone during sepsis. This study aimed to determine whether regulation of NO and the ANP system is altered in lipopolysaccharide (LPS)-induced kidney injury. LPS (10 $mg{\cdot}kg^{-1}$) was injected in the tail veins of male Sprague-Dawley rats; 12 hours later, the kidneys were removed. Protein expression of NO synthase (NOS) and neutral endopeptidase (NEP) was determined by semiquantitative immuno-blotting. As an index of synthesis of NO, its stable metabolites (nitrite/nitrate, NOx) were measured using colorimetric assays. mRNA expression of the ANP system was determined by real-time polymerase chain reaction. To determine the activity of guanylyl cyclase (GC), the amount of cGMP generated in response to sodium nitroprusside (SNP) and ANP was calculated. Creatinine clearance decreased and fractional excretion of sodium increased in LPS-treated rats compared with the controls. Inducible NOS protein expression increased in LPS-treated rats, while that of endothelial NOS, neuronal NOS, and NEP remained unchanged. Additionally, urinary and plasma NOx levels increased in LPS-treated rats. SNP-stimulated GC activity remained unchanged in the glomerulus and papilla in the LPS-treated rats. mRNA expression of natriuretic peptide receptor (NPR)-C decreased in LPS-treated rats, while that of ANP and NPR-A did not change. ANP-stimulated GC activity reduced in the glomerulus and papilla. In conclusion, enhancement of the NO/cGMP pathway and decrease in ANP clearance were found play a role in the pathogenesis of LPS-induced kidney injury.

Mechanism of Mixture of Bambusae Caulis in Liquamen and Bamboo Extract on the Cerebral Blood Flow and Blood Pressure in Rats (죽력(竹瀝)과 대나무 추출액의 혼합물이 뇌혈류 및 혈압에 미치는 작용 기전)

  • Kim, Cheon-Joong;Kim, Gye-Yeop;Jeong, Hyun-Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.6
    • /
    • pp.1612-1619
    • /
    • 2006
  • This Study was designed to investigate the mechanism of Mixture of Bambusae Caulis in Liquamen and Bamboo Extract on the change of regional cerebral blood flow (rCBF) and blood pressure (BP) in normal rats, and further to investigate cytokines production in serum of cerebral ischemic rats. Mixture were as follows ; Bamboo Extract extracted with distilled water at 98 $^{\circ}C$ for 3 hrs, Mixture of Bambusae Caulis in Liquamen and bamboo Extracts (MLE) mixed at the ratio 1 to 100 (MLE100), 1 to 50 (MLE50), 1 to 20 (MLE20), 1 to 10 (MLE10), 1 to 5 (MLE5). The results were as follows ; The MLE-induced increase in rCBF was significantly inhibited by pretreatment with indomethacin (1 mg/kg, I.p.), an inhibitor of cyclooxygenase as well as methylene blue (10 $^{\mu}g/kg$, I.p.), an inhibitor of guanylate cyclase. The MLE-induced increase in BP was significantly inhibited by pretreatment with methylene blue. In cytokines production in the serum drawn from femoral arterial 1 hr after middle cerebral artery occlusion, MLE5 significantly increased production of TGF-${\beta}$ and increased production of IL-10, but significantly decreased production of TGF-${\alpha}$ compared with control group. In cytokines production in the serum drawn from femoral arterial 1 hr after reperfusion, MLE5 significantly increased production of TGF-${\beta}$ and IL-10, but significantly decreased production of TGF-${\alpha}$ compared with control group. AS results above. And MLE5 had anti-ischemic effect by inhibiting TGF-${\alpha}$ production, and by accelerating IL-10 and TGF-${\beta}$ production.

The use of pituitary adenylate cyclase-activating polypeptide in the pre-maturation system improves in vitro developmental competence from small follicles of porcine oocytes

  • Park, Kyu-Mi;Kim, Kyu-Jun;Jin, Minghui;Han, Yongquan;So, Kyoung-Ha;Hyun, Sang-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1844-1853
    • /
    • 2019
  • Objective: We investigated how pituitary adenylate cyclase-activating polypeptide (PACAP) affects embryonic development during pre-in vitro maturation (pre-IVM) using porcine oocytes isolated from small follicles. Methods: We divided the follicles into the experimental groups by size (SF, small follicles; MF, medium follicles) and treated with and without PACAP and cultured for 18 hours (PreSF[-]PACAP; without PACAP, Pre-SF[+]PACAP; with PACAP) before undergoing IVM. The gene expression related to extracellular matrix formation (amphiregulin, epiregulin, and hyaluronan synthase 2 [HAS2]) and apoptosis (Bcl-2-associated X [BAX], B-cell lymphoma 2, and cysteine-aspartic acid protease 3) was investigated after maturation. The impact on developmental competence was assessed by the cleavage and blastocyst rate and total cell number of blastocysts in embryos generated from parthenogenesis (PA) and in vitro fertilization (IVF). Results: Cleavage rates in the Pre-SF(+)PACAP after PA were significantly higher than SF and Pre-SF(-)PACAP (p<0.05). The cleavage rates between MF and Pre- SF(+)PACAP groups yielded no notable differences after IVF. Pre-SF(+)PACAP displayed the higher rate of blastocyst formation and greater total cell number than SF and Pre-SF(-)PACAP (p<0.05). Cumulus cells showed significant upregulation of HAS2 mRNA in the Pre-SF(+)PACAP compared to the SF (p<0.05). In comparison to other groups, the Pre-SF(+)PACAP group displayed a downregulation in mRNA expression of BAX in matured oocytes (p<0.05). Conclusion: The PACAP treatment during pre-IVM improved the developmental potential of porcine oocytes derived from SF by regulating cumulus expansion and apoptosis of oocytes.

Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.25-36
    • /
    • 2022
  • To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3-induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.

DsLCYB Directionally Modulated β-Carotene of the Green Alga Dunaliella salina under Red Light Stress

  • Yanhong Lan;Yao Song;Yihan Guo;Dairong Qiao;Yi Cao;Hui Xu
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.12
    • /
    • pp.1622-1631
    • /
    • 2022
  • Carotenoids, which are natural pigments found abundantly in wide-ranging species, have diverse functions and high industrial potential. The carotenoid biosynthesis pathway is very complex and has multiple branches, while the accumulation of certain metabolites often affects other metabolites in this pathway. The DsLCYB gene that encodes lycopene cyclase was selected in this study to evaluate β-carotene production and the accumulation of β-carotene in the alga Dunaliella salina. Compared with the wild type, the transgenic algal species overexpressed the DsLCYB gene, resulting in a significant enhancement of the total carotenoid content, with the total amount reaching 8.46 mg/g for an increase of up to 1.26-fold. Interestingly, the production of α-carotene in the transformant was not significantly reduced. This result indicated that the regulation of DsLCYB on the metabolic flux distribution of carotenoid biosynthesis is directional. Moreover, the effects of different light-quality conditions on β-carotene production in D. salina strains were investigated. The results showed that the carotenoid components of β-carotene and β-cryptoxanthin were 1.8-fold and 1.23-fold higher than that in the wild type under red light stress, respectively. This suggests that the accumulation of β-carotene under red light conditions is potentially more profitable.

The Adenylyl Cyclase Activator Forskolin Increases Influenza Virus Propagation in MDCK Cells by Regulating ERK1/2 Activity

  • Sang-Yeon Lee;Jisun Lee;Hye-Lim Park;Yong-Wook Park;Hun Kim;Jae-Hwan Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1576-1586
    • /
    • 2023
  • Vaccination is the most effective method for preventing the spread of the influenza virus. Cell-based influenza vaccines have been developed to overcome the disadvantages of egg-based vaccines and their production efficiency has been previously discussed. In this study, we investigated whether treatment with forskolin (FSK), an adenylyl cyclase activator, affected the output of a cell-based influenza vaccine. We found that FSK increased the propagation of three influenza virus subtypes (A/H1N1/California/4/09, A/H3N2/Mississippi/1/85, and B/Shandong/7/97) in Madin-Darby canine kidney (MDCK) cells. Interestingly, FSK suppressed the growth of MDCK cells. This effect could be a result of protein kinase A (PKA)-Src axis activation, which downregulates extracellular signal-regulated kinase (ERK)1/2 activity and delays cell cycle progression from G1 to S. This delay in cell growth might benefit the binding and entry of the influenza virus in the early stages of viral replication. In contrast, FSK dramatically upregulated ERK1/2 activity via the cAMP-PKA-Raf-1 axis at a late stage of viral replication. Thus, increased ERK1/2 activity might contribute to increased viral ribonucleoprotein export and influenza virus propagation. The increase in viral titer induced by FSK could be explained by the action of cAMP in assisting the entry and binding of the influenza virus. Therefore, FSK addition to cell culture systems could help increase the production efficiency of cell-based vaccines against the influenza virus.

Temporal Changes in the Local Expression of Central Hormone-Regulating Factors in Rat Testis

  • Si-On You;Han-Seo Yoon;Hye-Soo Kim;Jin-Soo Park;Sung-Ho Lee
    • Development and Reproduction
    • /
    • v.28 no.1
    • /
    • pp.21-28
    • /
    • 2024
  • Present study aimed to investigate the temporal changes in expression of some reproductive hormones in testis, originally found in hypothalamus and pituitary. Rats were sacrificed on postnatal day 23 (PND23; immature), pubertal (PND53) and PND 81 (young adult). The testicular RNAs were extracted, and semi-quantitative PCRs for gonadotropin-releasing hormone (GnRH), kisspeptin 1 (KiSS1), pituitary adenylate cyclase-activating polypeptide (PACAP), LH subunits and LH receptor were performed. Transcript levels of GnRH and KiSS1 at PND23 were significantly higher than levels of PND53 and PND81 (p<0.001). PACAP mRNA level at PND23 was significantly lower than those of PND53 and PND81 (p<0.001). The mRNA levels of both testis type and pituitary type luteinizing hormone β subunit (tLHβ and pLHβ, respectively) at PND23 were significantly lower than levels of PND53 and PND81 (p<0.001). The mRNA level of glycoprotein hormone common alpha subunit (Cgα) at PND23 was significantly lower than those of PND53 and PND81 (p<0.001). Present study revealed the intratesticular expression of KiSS1 and GnRH showed a very similar trend while the expression of PACAP in the testis showed reversed pattern. The expressions of LHβ subunits (tLHβ and pLHβ) were very low during immature stage then increased significantly during puberty and early adulthood. Our attempt to study the local role(s) of intratesticular factors will be helpful to achieve precise understanding on the testis physiology and pathology.

Regulatgion of the Transport of Vitellogenin by Heterotrimeric G-Proteins during Oogenesis of a Polychaete, Pseudopotamilla occelata

  • Yi, Bong-Kyung;Lee, Yang-Rim
    • Animal cells and systems
    • /
    • v.2 no.1
    • /
    • pp.93-97
    • /
    • 1998
  • Coelomoic fluid protein (CP), a vitellogenin contained in the coelomic fluid of polychaetes, is transported by receptor-mediated endocvtosis that is controlled by GTP-binding proteins. Transport of 125l-CP was markedly inhibited by AlF4 and toxins such as cholera toxin and pertussis toxin. These effects appear to be mediated by cAMP, since 125l-CP transport was also greatly inhibited by dibutyryl cAMP. The results strongly suggest that hetero trimeric G-protein is involved in the regulation of 125l=CP transport through the activation of adenylyl cyclase. Immunoblotting tests with antibodies against Gsa and Gia subunits showed a Gsa subunit of 45 kDa in the membrane of oocytes of intermediate and large size classes and a Gia subunit of 41 kDa only in the oocytes of the intermediate size class.

  • PDF

Effect of cAMP on the Differentiation of F9 Teratocarcinoma Stem Cells Induced by Ginsenosides (Ginsenosides에 의한 F9 기형암종세포의 분화유도 과정에서 cAMP의 작용)

  • 이열남;이호영
    • Journal of Ginseng Research
    • /
    • v.21 no.3
    • /
    • pp.141-146
    • /
    • 1997
  • The role of cAMP in the differentiation process of F9 cells induced by ginsenosides was examined by performing transient transfixion assay with CRE-luciferase reporter plasmid, GR thansactivation assay with GRE-luciferase activity with or without treatment of CAMP and forskolin, an activator of adenylate cyclase, and protein klnase A assay in the presence of ginsenosides. Ginsenosides had no effect on CRE-transactivation activity, whereas retinoic acid induced the activity. When cAMP or forskolin was treated with ginsenosides, GRE-luciferase activity was further augumented by them. In addition, ginsenosides induced protein kinase A activity in the presence of cAMP. These results suggest that ginsenosides activate cAMP-dependent protein kinase A which, in turn, increase GR activity in F9 cells.

  • PDF