• Title/Summary/Keyword: CyberSecurity System engineering

Search Result 217, Processing Time 0.023 seconds

A Study on Hacking E-Mail Detection using Indicators of Compromise (침해지표를 활용한 해킹 이메일 탐지에 관한 연구)

  • Lee, Hoo-Ki
    • Convergence Security Journal
    • /
    • v.20 no.3
    • /
    • pp.21-28
    • /
    • 2020
  • In recent years, hacking and malware techniques have evolved and become sophisticated and complex, and numerous cyber-attacks are constantly occurring in various fields. Among them, the most widely used route for compromise incidents such as information leakage and system destruction was found to be E-Mails. In particular, it is still difficult to detect and identify E-Mail APT attacks that employ zero-day vulnerabilities and social engineering hacking techniques by detecting signatures and conducting dynamic analysis only. Thus, there has been an increased demand for indicators of compromise (IOC) to identify the causes of malicious activities and quickly respond to similar compromise incidents by sharing the information. In this study, we propose a method of extracting various forensic artifacts required for detecting and investigating Hacking E-Mails, which account for large portion of damages in security incidents. To achieve this, we employed a digital forensic indicator method that was previously utilized to collect information of client-side incidents.

Study on Equivalent Consumption Minimization Strategy Application in PTI-PTO Mode of Diesel-Electric Hybrid Propulsion System for Ships

  • Lee, Dae-Hong;Kim, Jong-Su;Yoon, Kyoung-Kuk;Hur, Jae-Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.3
    • /
    • pp.451-458
    • /
    • 2022
  • In Korea, five major ports have been designated as sulfur oxide emission control areas to reduce air pollutant emissions, in accordance with Article 10 of the "Special Act on Port Air Quality" and Article 32 of the "Ship Pollution Prevention Regulations". As regulations against vessel-originated air pollutants (such as PM, CO2, NOx, and SOx) have been strengthened, the Ministry of Oceans and Fisheries(MOF) enacted rules that newly built public ships should adopt eco-friendly propulsion systems. However, particularly in diesel-electric hybrid propulsion systems,the demand for precise control schemes continues to grow as the fuel saving rate significantly varies depending on the control strategy applied. The conventional Power Take In-Power Take Off(PTI - PTO) mode control adopts a rule-based strategy, but this strategy is applied only in the low-load range and PTI mode; thus, an additional method is required to determine the optimal fuel consumption point. The proposed control method is designed to optimize fuel consumption by applying the equivalent consumption minimization strategy(ECMS) to the PTI - PTO mode by considering the characteristics of the specific fuel oil consumption(SFOC) of the engine in a diesel-electric hybrid propulsion system. To apply this method, a specific fishing vessel model operating on the Korean coast was selected to simulate the load operation environment of the ship. In this study, a 10.2% reduction was achieved in the MATLAB/SimDrive and SimElectric simulation by comparing the fuel consumption and CO2 emissions of the ship to which the conventional rule-based strategy was applied and that to which the ECMS was applied.

The evolution of the Human Systems and Simulation Laboratory in nuclear power research

  • Anna Hall;Jeffrey C. Joe;Tina M. Miyake;Ronald L. Boring
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.801-813
    • /
    • 2023
  • The events at Three Mile Island in the United States brought about fundamental changes in the ways that simulation would be used in nuclear operations. The need for research simulators was identified to scientifically study human-centered risk and make recommendations for process control system designs. This paper documents the human factors research conducted at the Human Systems and Simulation Laboratory (HSSL) since its inception in 2010 at Idaho National Laboratory. The facility's primary purposes are to provide support to utilities for system upgrades and to validate modernized control room concepts. In the last decade, however, as nuclear industry needs have evolved, so too have the purposes of the HSSL. Thus, beyond control room modernization, human factors researchers have evaluated the security of nuclear infrastructure from cyber adversaries and evaluated human-in-the-loop simulations for joint operations with an integrated hydrogen generation plant. Lastly, our review presents research using human reliability analysis techniques with data collected from HSSL-based studies and concludes with potential future directions for the HSSL, including severe accident management and advanced control room technologies.

Intrusion Detection Approach using Feature Learning and Hierarchical Classification (특징학습과 계층분류를 이용한 침입탐지 방법 연구)

  • Han-Sung Lee;Yun-Hee Jeong;Se-Hoon Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.249-256
    • /
    • 2024
  • Machine learning-based intrusion detection methodologies require a large amount of uniform learning data for each class to be classified, and have the problem of having to retrain the entire system when adding an attack type to be detected or classified. In this paper, we use feature learning and hierarchical classification methods to solve classification problems and data imbalance problems using relatively little training data, and propose an intrusion detection methodology that makes it easy to add new attack types. The feasibility of the proposed system was verified through experiments using KDD IDS data..

A Pre-processing Process Using TadGAN-based Time-series Anomaly Detection (TadGAN 기반 시계열 이상 탐지를 활용한 전처리 프로세스 연구)

  • Lee, Seung Hoon;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.3
    • /
    • pp.459-471
    • /
    • 2022
  • Purpose: The purpose of this study was to increase prediction accuracy for an anomaly interval identified using an artificial intelligence-based time series anomaly detection technique by establishing a pre-processing process. Methods: Significant variables were extracted by applying feature selection techniques, and anomalies were derived using the TadGAN time series anomaly detection algorithm. After applying machine learning and deep learning methodologies using normal section data (excluding anomaly sections), the explanatory power of the anomaly sections was demonstrated through performance comparison. Results: The results of the machine learning methodology, the performance was the best when SHAP and TadGAN were applied, and the results in the deep learning, the performance was excellent when Chi-square Test and TadGAN were applied. Comparing each performance with the papers applied with a Conventional methodology using the same data, it can be seen that the performance of the MLR was significantly improved to 15%, Random Forest to 24%, XGBoost to 30%, Lasso Regression to 73%, LSTM to 17% and GRU to 19%. Conclusion: Based on the proposed process, when detecting unsupervised learning anomalies of data that are not actually labeled in various fields such as cyber security, financial sector, behavior pattern field, SNS. It is expected to prove the accuracy and explanation of the anomaly detection section and improve the performance of the model.

A study on Improving the Performance of Anti - Drone Systems using AI (인공지능(AI)을 활용한 드론방어체계 성능향상 방안에 관한 연구)

  • Hae Chul Ma;Jong Chan Moon;Jae Yong Park;Su Han Lee;Hyuk Jin Kwon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.2
    • /
    • pp.126-134
    • /
    • 2023
  • Drones are emerging as a new security threat, and the world is working to reduce them. Detection and identification are the most difficult and important parts of the anti-drone systems. Existing detection and identification methods each have their strengths and weaknesses, so complementary operations are required. Detection and identification performance in anti-drone systems can be improved through the use of artificial intelligence. This is because artificial intelligence can quickly analyze differences smaller than humans. There are three ways to utilize artificial intelligence. Through reinforcement learning-based physical control, noise and blur generated when the optical camera tracks the drone may be reduced, and tracking stability may be improved. The latest NeRF algorithm can be used to solve the problem of lack of enemy drone data. It is necessary to build a data network to utilize artificial intelligence. Through this, data can be efficiently collected and managed. In addition, model performance can be improved by regularly generating artificial intelligence learning data.

Virtual Go to School (VG2S): University Support Course System with Physical Time and Space Restrictions in a Distance Learning Environment

  • Fujita, Koji
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.137-142
    • /
    • 2021
  • Distance learning universities provide online course content. The main methods of providing class contents are on-demand and live-streaming. This means that students are not restricted by time or space. The advantage is that students can take the course anytime and anywhere. Therefore, unlike commuting students, there is no commuting time to the campus, and there is no natural process required to take classes. However, despite this convenient situation, the attendance rate and graduation rate of distance learning universities tend to be lower than that of commuting universities. Although the course environment is not the only factor, students cannot obtain a bachelor's degree unless they fulfill the graduation requirements. In both commuter and distance learning universities, taking classes is an important factor in earning credits. There are fewer time and space constraints for distance learning students than for commuting students. It is also easy for distance learning students to take classes at their own timing. There should be more ease of learning than for students who commute to school with restrictions. However, it is easier to take a course at a commuter university that conducts face-to-face classes. I thought that the reason for this was that commuting to school was a part of the process of taking classes for commuting students. Commuting to school was thought to increase the willingness and motivation to take classes. Therefore, I thought that the inconvenient constraints might encourage students to take the course. In this research, I focused on the act of commuting to school by students. These situations are also applied to the distance learning environment. The students have physical time constraints. To achieve this goal, I will implement a course restriction method that aims to promote the willingness and attitude of students. Therefore, in this paper, I have implemented a virtual school system called "virtual go to school (VG2S)" that reflects the actual route to school.

Cybersecurity of The Defense Information System network connected IoT Sensors (IoT Sensor가 연결된 국방정보통신망의 사이버보안 연구)

  • Han, Hyun-Jin;Park, Dea-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.802-808
    • /
    • 2020
  • The IoT(Internet of Things) is based on the development of sensor technology and high-speed communication infrastructure, and the number of IoT connected to the network is increasing more than the number of people, and the increase is also very fast. In the field of defense, IoT is being deployed in various fields such as operations, military, base defense, and informatization, and the need is also increasing. Unlike the existing PC/server information protection system, cyber threats are also increasing as IoT sensors, which are vulnerable to information protection, are increasing in the network, so it is necessary to study the platform to protect the defense information and communication network. we investigated the case of connecting wired and wireless IoT to the defense network, and presented an efficient interlocking design method of the IoT integrated independent network with enhanced security by minimizing the contact point with the defense network.

Research on Basic Concept Design for Digital Twin Ship Platform (디지털트윈 선박 플랫폼 설계를 위한 연구)

  • Yoon, Kyoungkuk;Kim, Jongsu;Jeon, Hyeonmin;Lim, Changkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1086-1091
    • /
    • 2022
  • The International Maritime Organization is establishing international agreements on maritime safety and security to prepare for the introduction of autonomous ships. In Korea, the industry is focusing on autonomous navigation system technology development, and to reduce accidents involving coastal ships, research on autonomous ship technology application plans for coastal ships is in progress. Interest in autonomously operated ships is increasing worldwide, and maritime demonstrations for verification of developed technologies are being pursued. In this study, a basic investigation was conducted on the design of a demonstration ship and an onshore platform (remote support center) using digital twin technology for application to coastal ships. To apply digital twin technology, an 8-m small battery-powered electric propulsion ship was selected as the target. The basic design of the twin-integrated platform was developed. The ship navigation and operation data were stored on a server system, and remote-control commands of the electric propulsion ship was achieved through communication between the ship and the onshore platform. Ship performance management, operation and operation optimization, and predictive control are possible using this digital twin technology. This safe and economical digital twin technology is applicable to ships responding to crisis scenarios.

Performance Comparison of Wave Information Retrieval Algorithms Based on 3D Image Analysis Using VTS Sensor (VTS 센서를 이용한 3D영상 분석에 기초한 파랑 정보 추출 알고리즘 성능 비교)

  • Ryu, Joong-seon;Lim, Dong-hee;Kim, Jin-soo;Lee, Byung-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.519-526
    • /
    • 2016
  • As marine accidents happen frequently, it is required to establish a marine traffic monitoring system, which is designed to improve the safety and efficiency of navigation in VTS (Vessel Traffic Service). For this aim, recently, X-band marine radar is used for extracting the sea surface information and, it is necessary to retrieve wave information correctly and provide for the safe and efficient movement of vessel traffic within the VTS area. In this paper, three different current estimation algorithms including the classical least-squares (LS) fitting, a modified iterative least-square fitting routine and a normalized scalar product of variable current velocities are compared with buoy data and then, the iterative least-square method is modified to estimate wave information by improving the initial current velocity. Through several simulations with radar signals, it is shown that the proposed method is effective in retrieving the wave information compared to the conventional methods.