• Title/Summary/Keyword: Cyanine

Search Result 52, Processing Time 0.028 seconds

CRT Color Transform to CIELab Color System using RGB Image Data (RGB 화상테이터를 이용한 CRT 표현색의 CIELab 표색계로의 변화에 관한 연구)

  • 안석출
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.13 no.1
    • /
    • pp.73-91
    • /
    • 1995
  • Spectroscopic and Photoelectric Characteristics in the Cyanine and Merocyanine Dye according to systematically change of their structures were experimentally discussed. As result, in solution, Hetero atoms(X) of Cyanine and Merocyanine dye were participated in resonance X of d obital rather than X of pobital,effected in resonance and contributed in extension of conjugated system. in solid film,new spectra,called eximer-fluorenscence,were appeared in 3-dimensional fluorenscence of high density of Cyanine dye but not of Merocyanine. The activational energy of conductivity in Merocyanine dye was lower than in cyanine, an the contrary,the drift mobility was higher and the former in photoelectric characteristics was more effec-tive than the latter. In this paper,authors invertigated the changes of dye structure by molecular obital method to confirm the results of spectroscopic and photoelectric characteristics in the Cyanine and Merocyanine Dye acco-rding to systematically cally change of their structure, and counted total energy on dihedral angle and dipol miments if dyes in S0 and S1.

  • PDF

Investigation of a series of near-infrared absorbing heptamethine cyanine dyes

  • Yun, Hye-Su;Park, Su-Yeol;Sin, Seung-Rim;Sin, Jong-Il;An, Gyeong-Ryong;Lee, Sang-O;O, Seong-Geun;Jeon, Geun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2009.11a
    • /
    • pp.115-116
    • /
    • 2009
  • In this study, near-infrared absorbing dyes, namely, new rigidified heptamethine cyanine dyes were synthesized and investigated their properties. The cyanine dyes have been synthesized by a condensation reaction between a quanternary salt containing as activated methyl group and an unsaturated bisaldehyde or its equivalent. We were investigated the synthesis of new rigidified heptamethine cyanine and related the compounds with near infrared absorption. The full spectroscopic characterization of all cyanine were described. Absorption properties in the near-infrared region may cause these dyes to the potential used in bio-probe, optical recording media materials.

  • PDF

Cyanine 및 Merocyanine색소의 분광특성 및 광전특성(2)

  • 손세모;권태선;김성훈
    • Proceedings of the Korean Printing Society Conference
    • /
    • 1995.11a
    • /
    • pp.13-17
    • /
    • 1995
  • 헤테로원자(X=O, S, Se)의 변환에 따라 용액상에서 Merocyanine색소 및 Cyanine색소의 헤테로원자X는 p궤도의 원자보다 d궤도의 원자가 공명에 관여하여 공역계확장에 기여하였고, 유전률이 큰 용매 일수륵 Merocyanine색소는 장파장으로 흡수극대치가 이동하였다. 또 Cyanine색소의 기저상태는 $I^-$이온과 정전하 발색단을 가진 이온성 화합물로 되어 있으므로 극성용매에서 $I^-$ 이온의 전하가 색소본체로 전하 이동전이가 발생하여 단파장화 하였다. 고상에서 색소의 농도가 높을 수록 색소분자간의 거리가 가까워져 색소 상호작용이 변화하여 흡수스펙트럼에서는 전체적으로 폭이 넓은 형태로 나타났으며 이것은 농도가 높을 수록 색소분자간의 거리가 가까워져 색소 상호작용이 변화한 때문이라고 생각된다. 또한 3차원 형광의 저농도에서 보이지 않는 새로운 스펙트럼이 Cyanine색소에서 나타났으며 이 스펙트럼은 색소고유의 흡수에 기인한 것으로 Eximer형광으로 생각된다. 광전특성에 있어서는 Merocyanine색소가 Cyanine색소보다 활성화에너지가 낮아 전하이동도가 커짐에 따라 높은 광전특성을 나타내었다. 그리고 Merocyanine색소 헤테로원자(X)의 비교에서 광전특성은 O

  • PDF

Spectrophotometric Determination of Scandium(III) with Eriochrome Cyanine R in the Presence of Cetyltrimethylammonium bromide (Cetyltrimethylammonium bromide에서 Eriochrome Cyanine R에 의한 스칸듐(III)의 분광광도법 정량)

  • Cha, Ki-Won;Park, Chan-Il;Kim, Jong-Whon
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.139-144
    • /
    • 1996
  • The spectrophotometric determination method of scandium with eriochrome cyanine R(ECR) and the composition ratio of the complex were investigated in the presence of surfactants. The absorbance increase and red shift of maximum adsorption wavelength of Sc(III)-ECR complex were observed in cetyltrimethylammonium bromide (CTMAB), but those changes were not observed in the sodium dodecyl sulfate(SDS) and Triton X-100. A volume of 5ml of $1{\times}10^{-3}M$ ECR and 10ml of $2{\times}10^{-4}M$ CTMAB are necessary for the determination of $1{\times}10^{-7}{\sim}3.0{\times}10^{-6}M$ Sc(III) at pH 6.5. The apparent molar absorption coefficient of the Sc(III)-ECR-CTMAB, temary complex at 610nm is $5.6{\times}10^5mol^{-1}cm^{-1}L$ and its detection limit is $1.0{\times}10^{-7}M$. The binary complex composition of Sc(III)-ECR is 1:2 and the ternary complex composition of Sc(III)-ECR-CTMAB is 1:3:1.

  • PDF

The Effect of Acetophenone on the Dyeing of Silk (견섬유의 염색에 있어서 아세토페논의 영향)

  • 김태경;임용진;박태수
    • Textile Coloration and Finishing
    • /
    • v.10 no.5
    • /
    • pp.56-62
    • /
    • 1998
  • In the prior study, the dyeing behaviors of Milling Cyanine 5R on silk fiber in aqueous dyeing liquor including small amount of organic compounds were investigated. The most effective compound was acetophenone which increased dye uptake as well as dyeing rate. In this study, the role of the acetophenone in dyeing of silk with Milling Cyanine 5R was studied. By addition of acetophenone into the dye solution, the molar absorptivity of Milling Cyanine 5R increased, and the wavelength of maximum absorption was shifted to longer wavelength, namely bathochromic shifted. This shows that the acetophenone prevents the dye to aggregate, and increases the number of monomeric dye molecule relative to the dye solution without acetophenone. This fact was also confirmed by the increase of the permeation rate of the dye through cellulose semipermeable membrane from the dye solution including the acetophenone. From these results, the acetophenone acts as a prohibitor of dye aggregation, increases the number of monomeric dye molecules even at relatively low temperature, and makes the dyes penetrate into the fiber easier.

  • PDF

Microwave-assisted Solvent-free Synthesis of Some Dimethine Cyanine Dyes, Spectral Properties and TD-DFT/PCM Calculations

  • Zhang, Xiang-Han;Wang, Lan-Ying;Zhai, Gao-Hong;Wen, Zhen-Yi;Zhang, Zu-Xun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2382-2388
    • /
    • 2007
  • A series of dimethine cyanine dyes were synthesized in a fast, efficient and high yield by the condensation of quaternary salts with 1H-indole-3-carbaldehyde in the presence of piperidine under solvent-free microwave irradiation. The products were identified by 1H NMR, IR, UV-Vis spectra and elemental analysis. The absorption and fluorescence properties of these dyes were investigated both experimentally and theoretically. Calculations performed at a combination of time-dependent density functional theory (TD-DFT) and the polarizable continuum model (PCM) reproduced the π-π* type absorption bands of the dyes. Regression analysis was used for studying theoretical results of the absorption maxima in different solvents. Compared with experimental counterparts, estimated overall uncertainties in the absorption maxima were about ±2%.

Relationship between the Molecular Structure and the Absorption Band Shape of Organic Dye (유기색소의 흡수대 형태와 분자구조와의 상관성)

  • Jun, Kun;Gwon, Seon Yeong;Kim, Sung Hoon
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.270-274
    • /
    • 2015
  • Molecules always show broad absorption band envelopes, and this results from the vibrational properties of bonds. The width of an absorption band can have an important influence on the color of a dye. A narrow band imparts a bright, spectrally pure color to the dye, whereas a broad band can give the same hue, but with a much duller appearance. Typically, half-band widths of cyanine dyes are about 25nm compared to value of over 50nm for typical merocyanine dyes. Thus, cyanine dyes are exceptionally bright. The factors influencing the width of an absorption band can be understood with reference to the Morse curves. The width of the absorption band depends on how closely the bond order of the molecules in the first excited state resembles that in the ground state. We have quantitatively evaluated the "molecular structure-absorption band shape" relationship of dye molecules by means of Pariser-Parr-Pople Molecular Orbital Method(PPP-MO).