• Title/Summary/Keyword: Cuttings

Search Result 384, Processing Time 0.024 seconds

Studies on the Propagation and Planting of Ilex serrate Thunb (낙상홍의 번식방법과 식재에 관한 연구)

  • 심경구;서병기;하유미;김건호;권오준
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.21 no.3
    • /
    • pp.99-104
    • /
    • 1993
  • The objectives of this study were investigation of the sutiable propagation method by softwood cuttings of female Ilex serrata, the comparison of sex determination of Ilex serrata after seeding and the fruiting percentage of the Ilex serrata male and female. The results obtained were as follows. 85 percentage of the seed were germinated with three months cold stratification. 35 percentage of female plant were observed after seeding. Cuttings should be rooted on late June using a quick dipping of 1,000ppm IBA solution. The rooting rate of the softwood cuttings treated IBA 1,000pm on June 22 in a closed moist chamber with 50% shade screen was 72.2 percentage. The suitable planting of male and female of Ilex serrata was male one versus female thirteen in a distance of 50 meter.

  • PDF

Effects of Auxin and Fog Treatments on the Green-Wood Cutting of the Mature Trees in Prunus yedoensis (왕벚나무 성숙목의 녹지삽목에서 Auxin 및 Fog 처리 효과)

  • Kim, Chang-Soo;Kim, Zin-Suh
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.6
    • /
    • pp.676-683
    • /
    • 2007
  • In an attempt to develop an efficient method for the propagation of mature Prunus yedoensis (45 to 55 years old), green wood cuttings from normal branch and sprouts branch were treated with three different kinds of auxin (Rootone < 1-naphthylacetamide 0.4% >, IBA 100 ppm, and control and two different kinds of fog systems (0.9 L/min. and 0.54 L/min.). The Rootone treatment showed higher values in the percentage of rootings (PR) and the mean number of roots per cutting (NR) than the IBA treatment in the early stage. However, in the late stage, the values of PR and NR in the Rootone treatment become lower than those in the IBA 100 ppm treatment. On the other hand, root development ceased 62 days after taking cuttings for all of the treatments. The IBA 100 ppm treatment showed the best performance in root development (PR= 89.5%, NR = 6.5, LR=6.4 cm). The values of PR (76.5%) and NR (6.4) in the 0.9 L/min. of fog treatment was higher than those (PR = 71.7% and NR = 5.4) in the 0.54 L/min. of fog treatment. The cuttings from sprouts (PR: 74.8%, NR: 5.9, LR: 5.7 cm) showed slightly better performance in rooting rate that the cuttings from shoots (PR : 73.3%, NR: 5.9, LR: 5.4 cm). Statistically significant interactions were presented among most of the different combinations of three factors (auxin treatments, fog treatments, and types of cuttings). The PR showed the highest value of 98.0% in the combination of cuttings of shoots+IBA 100 ppm+0.54 L/min. fog treatments. In case of NR, the cuttings from normal branch showed a higher value than the cuttings from sprouts branch under the fog treatment of 0.9 L/min., while this tendency was reversed under the fog treatment of 0.54 L/min.. The perigon development of roots, which reflects the number and the direction of roots, was best in the IBA treatment (85.6%).

Establishment of Herbicide Screening Methods for Reed (Phragmites communis Trin.) Control - I. Propagation of Reed (갈대(Reed, Phragmites communis Trin.)의 방제를 위한 제초제 스크리닝방법의 확립 - I. 갈대의 육묘)

  • Hwang, I.T.;Choi, J.S.;Lee, H.J.;Hong, K.S.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.16 no.1
    • /
    • pp.21-27
    • /
    • 1996
  • This experiment was conducted to find out an effective propagation method for reed(Phragmites communis Trin.), ensuring a continuous herbicide screening for reed control. Reed propagation methods were compared under a greenhouse condition using tour different materials; seeds, rhizomes, depressed stolons of P. japonica Steud., and stem cuttings. Although reed seeds were easy to harvest and store, their germination rate(${\leq}$5%) was very low and seedling growth from the seeds was slow. Rhizomes were difficult to harvest and their harvest time was limited from November to March. Furthermore, reed propagation using rhizomes had problems of a relatively low germination rate(46%), no uniformity in size and shape, individual differences at the early stage of growth, and difficulties in material storage. Rate of reed growth from rhizomes was higher in commercial soil mix(Boo Nong soil) than in sand or in sand+upland soil(1:1). Depressed stolons of P. japonica had a moderate germination rate(65%) and were relatively easy to harvest. However, their harvest time was limited only from August to September. Propagation method using stem cuttings had several advantages over the above methods using other materials. Reed plants could uniformly be propagated from the stem cuttings with a relatively high germination rate(75%). Stem cuttings of central nodes showed a higher germination rate compared to those of upper or lower nodes. Stem cuttings from the field should be used immediately after harvest, since their germination rate decreased rapidly when they were stored under a wet- or a dry-refrigerated condition. Furthermore, the germination of stem cuttings tended to decrease when they were collected from the field after August. This indicates that there is a limitation of harvest time for stem cuttings. However, a year-round propagation of reed using stem cuttings is possible if parent plants are grown in a greenhouse, and thus herbicide screening for reed control could continuously be performed.

  • PDF

The Promotive Effect of NAA, IBA and Ethychlozate on Rooting Cuttings of Certain Ornamental Plants and Some Physiological Studies. (관상식물 삽목발근에 있어서 NAA, IBA 및 Ethychlozate의 발근촉진효과와 그 생리학적연구)

  • Jeong, Hae-Jun;Gwak, Byeong-Hwa
    • The Journal of Natural Sciences
    • /
    • v.1
    • /
    • pp.115-198
    • /
    • 1987
  • The present studies were undertaken to elucidate the influence of auxins, auxin-like substance-ethychlozate ("Figaron"),and pH and sort of rooting media on rooted propagation of certainornamental woody plant cuttings, and to see possible changes in internal compositions characterizing after root-promoting treatment as the cutting stage proceeded. The experimental check-up srevealed and summarized as seen in the following;I. Effect of three different auxin treatments on rooting cuttings: 1) Promotive influence of auxin varied according to different concentration levels, hours of dipping treatment of the auxins, and kind of plants. The greatest effect was obtained for Forsythia ksreana with NAA and IBA, for Ligustrurn obtusifolium var. variegatum with NAA and ethychlozate, for Hydrangea macrophylla, Magnolia kobus, and Magnolia liliflora with NAA, lBA and ethychlozate also. The most effective level of the promotive agents was found 200mg/l for NAA, 1000mg/l for IBA, and 200mg/l for ethychlozate. For Weigela florida and Gardenia jasminoides, range of the most effective level was shown relatively wide spread. 2) NAA was more effective at its optimal level of the rooting agent than ethychiozate for Weigela florida, Viburnum awabuki, Forsythia koreana, Acer palmatum 'Nomura', Bouga invillea glabra, Elaeagnus umbellata, Prunus tomentosa, Ligustrum obtusifolium, Pyracantha coccinea, Cestrum noctu rnum, Hydrangea macrophylla, Codiaeum variegatum, Rhododen dron lateritium, and Ilex crenata var. macrophylla, and yet ethychlozate was found either as equally as effective or more so than NAA for Zebrina pendula, Hibiscus syriacus, Fatshedera lizei, Schefflera arboricola, Campsis grandiflo ra, Ixora chinensis, Euonymus japonica, and Magnolia liliflora. On the contrary, no the auxin effect was noted with Lagerstroemia indica, Trachelospermum asiaticum, and Syringa vulgaris. This probably indicates that these species are genetically different for the auxin response.II. Effect of different pH and sorts of cutting media on rooting cuttings: 1) Bougainvillea showed best in rooting for the number and dry weight at pH 6.5, more with ethychlozate than NAA, while Ligustrum did at pH 5.0 more with NAA than ethychlozate. pH 4.0 medium resulted in the best rooting for Rhododendron with NAA, more than ethychlozate. 2) Use of cutting medium with peat: perlite: vermiculite = 1:1:1 showed to give the greatest rooting percent and dry weight, apart from considering the number of roots. This apparently meant the fact that cutting medium has more to do with root growth than root differentiation. Rhododendron yet showed results with cutting media that use of peat: perlite = 2:1 mixed is more effective on rooting than using peat alone.III. Effect of auxinic treatments on rooting cuttings and change in some cutting compositions: 1) Under the climatic conditions of July having temperature $26.3\pm$$2.4^{\circ}C$for cutting bed, new roots of Magnolia started to show up generally 20 days after the cutting was made, whereas Cestrum did much earlier than that, namely 14 days after. 2) Although total carbohydrate content of Magnolia cuttings showed no marked change without auxin treatment, it did so with the treatment, especially 30 days after the start of cutting. Cestrum cuttings demonstrated a gradual in crease in total carbohydrate content as rooting took place, and the content became reduced more with auxin than with out, just about when rooting proceeded to 14 days after the start of cutting. 3) Magnolia generally showed an increase in total nitrogen content as rooting proceeded more, and Cestrum showed a decrease in total nitrogen of cuttings. The auxin treatment exhibited no pertinent relation with change in plant nitro gen when rooting is promoted with auxin treatment. 4) An abrupt drop of total sugar and reducing sugar was noticed as Magnolia rooting started, and this reduction was parti cularly outstanding with auxin treatment. Starch content also was decreased in the later stage of cutting with auxin treatment, and was rather increased without auxin. Although sugar content soon increased as cutting started with auxin treatment in the case of Cestrum, it became reduced after rooting took place. 5) Total phenol content increased with rooting, and this was especially true when rooting started. This increase was reversed somehow regardless of auxin treatment. A decrease in phenol of Magnolia was found more striking with auxin than without in the later stage of the cutting period. 6)Avena coleoptile test for auxin-like substances presented the physiologically active factor is more in easy-to-root Magnolia liliflora than hard-to-root Magnolia kobus, and the activity of auxin-like substances was much increased with auxin treatment. The increase in the growth promoting substances was markedly pronounced when rooting just started. The active growth substances decreased in the later stage of cutting, and certain inhibitory substances started appearing. Cestrum also showed physiologically similar growth promoting substances accompanying auxin-like active substances if auxin is treated, and some strong inhibitory substances seemed to appear in the later stage of cutting. 7) Mung-bean-rooting test indicated biologically that endogenous growth substances in Magnolia all promoted mung-bean rooting, and activity of the growth substances apparently stimulated mung-bean rooting with auxin more than without. Here auxin treatment seemed to give a rise to an increased activity of endogenous growth substances in cuttings. This activity was found much greater with either NAA or IBA than ethychlozate, and showed its peak of the activity when rooting first started taking place. Certain inhibitory substances for Avena coleoptile growth strongly promoted mung-bean rooting, and it was also much like in the case of Cestrum.

  • PDF

Enhancement of Growth and Survival of Populus alba × P. glandulosa Cuttings Inoculated with Ectomycorrhizal Fungus, Pisolithus tinctorius under Fumigated Nursery Condition (모래밭버섯 균근균(菌根菌)의 인공접종(人工接種)에 의(依)한 포플러 삽목묘(揷木苗)의 생장촉진(生長促進) 및 활착률(活着率) 증진(増進))

  • Lee, Kyung Joon;Koo, Chang Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.70 no.1
    • /
    • pp.72-76
    • /
    • 1985
  • Populus alba ${\times}$ P. glandulosa cuttings in nursery bed were inoculated with mycelium of ectomycorrhizal fungus, Pisolithus tinctorius (Pt) to evaluate effectiveness of the fungus in growth stimulation of poplar. Pt was cultured in 1l glass bottles with vermiculite-peatmoss mixture moistened with modified Melin-Norkrans' solution. The nursery bed was arranged for microplots of $1{\times}2m$ in size and fumigated with methyl bromide before inoculation and cutting placement. Fifty cuttings were placed in each microplot and two treatments (fumigation only and fumigation plus Pt inoculation) were replicated three times. At the end of the first growing season, inoculated plants grew 19% faster in height and produced 49% more dry weight (above-ground portion) than uninoculated plants. Survival rate of inoculated cuttings was also improved by 20% over that of uninoculated cuttings. Inoculated cuttings developed abundant fine root system with golden brown zigzag tips. In the middle of September a sporocarp of Pt was produced from an inoculated plot, suggesting successful establishment of mycorrhiza between poplar and Pt fungus.

  • PDF

Effects of Inverted Incubation on Adventitious Root Formation in Epicotyl Cuttings of Vigna angularis Owhiet Ohashi (팥의 유경절편에서 부정근형성에대한 도립배양의 효과)

  • Kang, Byung-Sook;Cho, Duck-Yee;Kim, Young-Soon;Soh, Woong-Young
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.2
    • /
    • pp.75-80
    • /
    • 1998
  • Disbudded epicotyl cuttings from light-grown 6-day-old seedings of Vigna angularis Owhi et Ohashi were preincubated in $2\;\times\;10^{-4}M$ IAA solution for 48 hr to promote adventitious root formation in upright or inverted direction and then incubated in upright direction for 96 hr. Adventitious root formation occurred only at the morphological base of the cuttings which were preincubated in upright direction, while at the both ends in inverted direction. IAA treatment enhanced the adventitious root formation in all cuttings regardless of their orientation during preincubation. To elucidate localized root development, the activity of enzymes involved in root initiation and development was measured 24 hr, 48 hr, and 148 hr after epicotyl incubation. IAA oxidase, peroxidase and catalase were assayed in the apical, middle and basal segment of the epicotyls, and their fresh weight and length were measured. Elongation occurred the most in the upper segment of the epicotyl while fresh weight gain was the most in the basal segment. At root initiation phase, 24 hr after incubation IAA peroxidase and catalase activities appeared high at rooting zone while IAA oxidase activity was low at both ends, IAA oxidase and peroxidase activities declined at the rooting zone during the adventitious root formation at 48 ht. Inversion of cuttings during preincubation caused a chrange of enzyme activities along their epicotyl cuttings. Only peroxidase activity showed a high correlation with root initiation. Therefore, the biochemical change is highly correlated with change in IAA level in the rooting zone of the epicotyl, resulting in root formation in unusual rooting zone of epicotyl.

  • PDF

Fruit Quality of 'Wonhwang' Pear Trees with Low-pesticides and In Vitro Regrowth of Stem Cuttings as Affected by Time of Defoliation (시기별 적엽이 저농약 '원황'배의 과실품질과 삽수의 기내 재생장에 미치는 영향)

  • Kim, Byeong-Sam;Cho, Kyung-Chul;Ma, Kyung-Chul;Yun, Bong-Ki;Jung, Seok-Kyu;Han, Jeom-Hwa;Choi, Hyun-Sug
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.469-480
    • /
    • 2015
  • The study was conducted on the effects of time of defoliation on fruit quality of pear (Pyrus pyrifolia Nakai) trees, managing with low-pesticides, and regrowth of stem cuttings in vitro. Treatments included for 40% of uniform defoliation at early-August, end-August, and early-September, as well as control (no defoliation). Defoliation at early-September and control increased growth of water sprouts as well as concentrations of carbohydrates, total nitrogen, and free sugar in one-year old shoots. Defoliation at early-September and control increased fruit yield and mean fruit weight, with high soluble solids content and fruit surface color of $a^*$ observed for both defoliation at end-August and early-September. Defoliation at early-August increased rates of electrolyte leakage in stem cuttings at $-18^{\circ}C$ in vitro. There were no significantly different for germination rates of the cuttings between the treatments at -18 and $-21^{\circ}C$ in vitro, with the highest germination of the cuttings observed for defoliation at early-September and control at $-27^{\circ}C$. Therefore, orchard management should be performed to be minimized for defoliation of the spur leaves until end-August, causing from precipitation and pests.

Effect of Cutting Position, Media and Auxin on Rooting of Leaf Variegated Artemisia keiskeana Stem Cuttings (잎무늬종 맑은대쑥의 줄기삽목시 삽수부위, 용토 및 오옥신 처리가 발근에 미치는 영향)

  • Youn, Hee-Jung;Lee, Jong-Suk
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.1
    • /
    • pp.29-32
    • /
    • 2010
  • This study was conducted to determine the effects of cutting position, media, and auxin on rooting of Artemisia keiskeana cuttings. In the cutting positions, the cutting of middle and basal positions had a better growth in the both upper and lower part than the cutting of the top position. Especially, the cutting of the middle position showed the highest rooting rate, at 68.3%. In the media, peatmoss showed the latest date on the rooting initiation. Also, the growth, survival rate and rooting rate of the upper part and lower part were low. However, the cutting in vermiculate showed the fastest date on the rooting initiation, and had a significant effect on the growth of the upper part and lower part, showing the highest rooting rate and survival rate in all tested media. When cuttings were treated by auxin, the rooting rate and growth of cuttings were higher than the control. The control showed the lowest rooting rate, at 41%, while, the auxin treatment showed the highest, rate over 80%. Whereas when treated by NAA, the lower part of cuttings had a better growth than these treated by IBA. Also, the higher the concentration of auxin was, the higher the rooting rate and growth rate of Artemisia keiskeana cuttings were.

Anatomical Studies on Root Formation in Hypocotyl and Epicotyl Cuttings of Woody Plants (임목(林木)의 배축(胚軸) 및 유경삽수발근(幼茎揷穗発根)의 해부학적(解剖学的) 연구(研究))

  • Choi, Man Bong
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.1-30
    • /
    • 1981
  • The origin and development of adventitious roots was studied using hypocotyl and epicotyl cuttings of 34 species, 24 genus of woody plants. These cuttings obtained from young seedlings cultured in vials containing distilled water only. The several characteristics of cuttings materials studied are shown in Table 1. The results are summerized as follows: 1. The circumference shapes of cross-sections of hypocotyl and epicotyl cuttings can be divided into six categories, namely, round, irregular round, ellipse, irregular ellipse, square, and triangle. Species differences within a genus did not show any difference of hypocotyl and epicotyl cross-sections shape, however, a noticeable variation among genus or higher taxa. 2. The arrangements of vascular bundles in the cross-sections of hypocotyls or epicotyls were almost all collateral types and generally showed generic characteristics differing one to the other. However, there were some variations between species within the genus. Six models of vascular bundle arrangement were proposed for all the above speices. 3. The rooting portions of hypocotyl and epicotyl cuttings in this experimental materials can be grouped as follows: (1) Interfascicular parenchyma; (Thuja orientalis. T. orientalis for. sieboldii, Acer microsieboldianum, A. palmatum, A. saccharinum, Cercis chinensis, Lespedeza bicolor, Magnolia obovata, M. sieboldii, Mallotus japonicus, Staphylea bumalda) (2) Cambial and phloem parenchyma: (Chamaecyparis obtusa, C. pisifera, Albizzia julibrissin, Buxus microphylla var. Koreana, Cereis chinensis, Euonymus japonica, Firmiana platanifolia, Lagerstroemia indica, Ligustrum salicinum, L. obtusifolium, Magnolia kobus, M. obovata, Mallotus japonicus, Morus alba, Poncirus trifoliata, Quercus myrsinaefolia, Rosa polyantha, Styrax japonica, Styrax obassia) (3) Primary ray tissues; (Euonymus japonica, Styrax japonica) (4) Leaf traces; (Quercus acutissima, Q. aliena) (5) Cortex parenchyma; (Ailanthus altissima) (6) Callus tissues; (Castanea crenata, Quercus aliena, Q. myrsinaefolia, Q. serrata) 4. As a general tendency throughout the species studied, in hypocotyl cuttings, the adventitious root primordia were originated from the interfascicular parenchyma tissue, however, leaf traces and callus tissues were contributed to the root primordia formation in epicotyl cuttings. The hypocotyl cuttings of Ailanthus altissima exhibited a special performance in the root primordia formation, this means that cortex parenchyma was participated to the origin tissue. And in Firmiana platanifolia, differening from the other most species, the root primordia were formed at the phloem parenchyma adjacent outwardly to xylem tissue of vascular bundle system as shown photo. 48. 5. All the easy-to, or difficult-to root species developed adventitious roots in vials filled with distilled water. In the difficult-to-root species, however, root formations seemed to be delayed because they almost all had selerenchyma or phloem fiber which gave some mechanical hindrance to protrusion of root primordia. On the other hand, in the easy-to-root species they seemed to form them more easily because they did not have the said tissues. The rooting portions between easy-to-root and difficult-to-root species have not clearly been distinguished, and they have multitudinous variations. 6. The species structured with the more vascular bundles in number compared with the less vascular bundles exhibited delayed rooting. In the cuttings preparation, the proximal end of cuttings was closer to root-to-stem transition region, the adventitious root formation showed easier. 7. A different case occured however with the mature stem cuttings, in both the needle-leaved and the broad-leaved species. In the hypocotyl cuttings, parenchymatous tissues sited near the vascular bundles become the most frequent root forming portions in general and relevant distinctions between both species were hardly recognizable. 8. In the epicotyl cuttings, root primordia originated mainly in leaf traces in connection with cambial and phloems or callus tissues itself. In the hypocotyl cuttings, interfascicular parenchyma was the most frequent portion of the root primordia formation. The portions of root primordia had more connection with vascular cambium system, as the tissues were continuing to be developed.

  • PDF

COMPARISON OF INDICATING NET SHAPING (망지 사단방법의 비교)

  • KO Kwan Soh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.1 no.2
    • /
    • pp.129-133
    • /
    • 1968
  • The writer reviewed the cutting method of webbing practiced in major countries. Cutting rhythm Bar cutting to Point Cutting) should be chosen to approach as straight as possible, therefore the knot cuttings or the side cuttings should be 1, if possile. According to calculation, an arbitrary solution to a mixed cutting was undertaken, while another cutting method, of calculation 5 and 6, was taken by a prepared table. In no case, it was consequently possible to use an unmixed cutting rhythm. Sometimes, the cutting calculated from approximate value differs from desired result, tut this defference should not be taken too significant in practice.

  • PDF