• Title/Summary/Keyword: Cutting wear

Search Result 680, Processing Time 0.027 seconds

Study on Effects of Coatings on Cutting Tool Wear (절삭공구의 피복층이 공구마멸에 미치는 영향에 대한 연구)

  • 손태영;양민양
    • Tribology and Lubricants
    • /
    • v.6 no.1
    • /
    • pp.82-88
    • /
    • 1990
  • In order to investigate tribological effects of coatings on different places on tool wear, commercial quality coated inserts were tested in production speed machining after the coatings on clearance or rake face of coated tools were selectively removed. The experimental results demonstrated that the primary role of coatings in tool wear was the reduction of the thermochemical adhesion between the tool material and workpiece. And the coating on rake face was observed to retard the progress of flank wear. In case of machining carbon steel, multicoated tools showed the most favorable results for considering the notch wear.

A Study on Tool Wear in Drilling of Hot-rolled High Strength Steel (고장력 열연강판의 드릴 가공시 공구마멸에 관한 연구)

  • 신형곤;김성일;김태영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.10-17
    • /
    • 2001
  • Drilling is one of the most important operations performed in the machining industry. And the material of the workpiece has a profound effect on the tool life, the surface finish produced and the overall economy of the process. Hot-rolled high strength steels have been used for automobile structural material, owing to high hardness and machinability of the material. However, in the drilling of hot-rolled high strength steels, the current knowledge of tool wear and machinability are insuf-ficient. There, it is desirable to monitor drill wear status and hole quality changes during the hole drilling process. Accordingly, this paper deals with the cutting characteristics of the hot-rolled high strength steels using common HSS drill. The performance variables include the drilling thrust, torque and drill wear data obtained from drilling experiments con-ducted on the workpiece. Also drill were is measured by acoustic emission system and computer vision system.

  • PDF

Sensor Fusion and Neural Network Analysis for Drill-Wear Monitoring (센서퓨젼 기반의 인공신경망을 이용한 드릴 마모 모니터링)

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.77-85
    • /
    • 2008
  • The objective of the study is to construct a sensor fusion system for tool-condition monitoring (TCM) that will lead to a more efficient and economical drill usage. Drill-wear monitoring has an important attribute in the automatic machining processes as it can help preventing the damage of tools and workpieces, and optimizing the drill usage. In this study, we present the architectures of a multi-layer feed-forward neural network with Levenberg-Marquardt training algorithm based on sensor fusion for the monitoring of drill-wear condition. The input features to the neural networks were extracted from AE, vibration and current signals using the wavelet packet transform (WPT) analysis. Training and testing were performed at a moderate range of cutting conditions in the dry drilling of steel plates. The results show good performance in drill- wear monitoring by the proposed method of sensor fusion and neural network analysis.

EHect of Carbide Addition on Riping and Wear Properties of HSS (탄화물의 첨가가 고속도강의 HIP과 마모에 미치는 영향)

  • 김득중
    • Journal of Powder Materials
    • /
    • v.3 no.3
    • /
    • pp.188-195
    • /
    • 1996
  • In recent times the potential application of the high speed steel produced by HIP process for wear resistant and cutting materials are increasing. In this work the microstructure of Anval 30 produced by HIP process was investigated and the effect of WC, TiC addition on microstructure formation and wear properties were studied. After HIP process at 1150 $^{\circ}C$, the original feature of spherical raw powders was not removed and consequently, nonuniform microstructure was formed. However the WC added by simple powder mixture incereased the sinterbility of high speed steel and uniform microstructure formed. The wear characteristics of Anval 30 with carbide addition were tested at RT and $600^{\circ}C$. The uniform microstructure played an more important role in wear resistance as compared with the hardness.

  • PDF

Study on Abrasive Wear Behaviour of a Carbon Fiber Composites (탄소 섬유 강화 고분자 복합재의 연삭마모 특성에 관한 연구)

  • Koh, S.W.;Yang, B.C.;Kim, H.J.;Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.46-51
    • /
    • 2006
  • Present study was investigated the effect of the particle of the counterface of unidirectional carbon fiber reinforced composite. The friction coefficient of composite and the specific wear rate different sliding velocity were measured for this materials. The friction track of counterface was observed by an optical microscope and scanning electron microscope. There were insignificant effects of the specific wear rate under lower Sic abrasive particle, however it showed high effect on $30{\mu}m$ abrasive particle size. There were significant effects of friction and wear behavior of the fiber direction under 0.3m/s sliding speed. Major failure mechanisms can be classified such as microfracture, plowing, microcutting, cutting and cracking.

  • PDF

Comparison of TiAlN DLC and PCD Tool Wear in CFRP Drilling (CFRP 드릴링에서 TiAlN DLC 코팅과 PCD의 공구마모 비교)

  • Baek, Jong-Hyun;Kim, Su-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.77-83
    • /
    • 2022
  • A high-hardness tool material is required to reduce extreme abrasive wear when drilling carbon fiber reinforced plastic (CFRP). Single-crystal diamond is the hardest material in the world, but it is very expensive to be used as a cutting tool. Polycrystalline diamond (PCD) is a diamond grit fused at a high temperature and pressure, and diamond-like carbon (DLC) is an amorphous carbon with high hardness. This study compares DLC coatings and PCD inserts to conventional TiAlN-coated tungsten carbide drills. In fiberglass and carbon fiber reinforced polymer drilling, the tool wear of DLC-coated carbide was approximately half that of TiAlN-coated tools, and slight tool wear occurred in the case of PCD insert end drills.

A study on the measurement of flank wear by computer vision in turning (선삭에서 컴퓨터비젼을 이용한 플랭크 마모 측정에 관한 연구)

  • Kim, Young-Il;Ryu, Bong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.168-174
    • /
    • 1993
  • A new digital image processing method for measuring of the flank wear of cutting tool is presented. The method is based on computer vision technology in which the tool is illuminated by two halogen lamps and the wear zone is visualized using a CCD camera. The image is converted into digital pixel and processed to detect the wearland width. As a conclusion, it has been proved that the average wearland area and mzximum peak values of the flank wear width can monitored effectively to a measuring resolution of 0.01mm.

  • PDF

Machining Characteristics in High Speed Endmill Operation Considering Clearance Angle (엔드밀 가공 시 여유각을 고려한 가공특성)

  • 박정남;고성림
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.43-49
    • /
    • 2004
  • The objective of this research is to investigate the effect of clearance angle on cutting performance in high speed end milling operation. The tool geometry parameters have complex relationship with cutting process parameter. In order to explain the effect of clearance angle, 2D turning operation in lathe and end milling operations are performed. Tools with different clearance angles are manufactured. Cutting forces, machining accuracy and tool life are examined according to the change of clearance angle. As clearance angle increases, cutting force decreases and machining accuracy improves. But it has been proved that there exists the optimal clearance angle according to the diameter of end mill for maximum tool life which is measured by frank wear.

An Experimental Study on the Proper Supply Method of Metal Cutting Coolant (절삭유 공급 방식의 최적화를 위한 실험적 연구)

  • 강재훈;송준엽;최종호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.977-980
    • /
    • 2004
  • Metalworking fluids (MWFs) are fluids used during machining and grinding to prolong the life of the tool, carry away debris, and protect the surfaces of work pieces. These fluids reduce friction between the cutting tool and the work surface, reduce wear and galling, protect surface characteristics, reduce surface adhesion or welding and carry away generated heat. Workers can be exposed to MWFs by inhaling aerosols (mists) and by skin contact with the fluid. Skin contact occurs by dipping the hands into the fluid, splashes, or handling workpieces coated with the fluids. The amount of mist generated (and the resulting level of exposure) depends on many factors. To reduce the environmental pollution wastes and the potential health risks associated with occupational exposures to MWFs, it is required to establish optimum MWFs supply method and condition with minimum quantity in all over the mechanical machining field including high-speed type heavy cutting process.

  • PDF

Evaluation of Machining Characteristics for Difficulty-to-cut Material (Heat-Resistant Alloy) (난삭제(내열합금강)의 가공특성평가)

  • 김석원;이득우;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.135-138
    • /
    • 1995
  • Recently, most of advanced materials used a wide industry field commonly have the characteristics of difficulty-to-cut materials. The cutting of difficulty-ro-cut materials have a variable optimum cutting conditions and methods according to materials. Above all,it is important of understanding to machinability of each materials. Especially, superalloy with Elevated Temperature Strength like as Incone1718 was used in nuclear power equipment and jet engine parts. This research shows a machining characteristics of Heat-Resistant alloy for high efficiency cutting through cutting force,tool wear and cutting temperature in SUS304 and Incone1718.

  • PDF