• Title/Summary/Keyword: Cutting wear

Search Result 679, Processing Time 0.021 seconds

The Evaluation of PVD Coated HSS Endmill (HSS엔드밀의 PVD코팅 및 성능평가)

  • Lee, Sang-Seog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.119-125
    • /
    • 2013
  • To enhance the cutting performance of high speed steel(HSS) endmill, single and multilayer coating is applied on the substrated of the HSS endmill. Coating material reduces cutting force and enhances resistance against abrasive wear. This paper presents the physical vapour deposition(PVD) coating technology and evaluate the PVD coated HSS endmill. The performance of coated HSS endmills are fifteen times better than uncoated HSS endmill on proposed cutting conditions. The TiAlN monolayer coated endmills(futura nano coating) are better than those of multilayer coated endmills(futura coating) on machined surface and tool wear.

Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Machining Simulation System (통합절삭 시뮬레이션 시스템용 선삭표면조도 시뮬레이션 알고리즘의 설계)

  • 장동영
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.1
    • /
    • pp.19-33
    • /
    • 1999
  • The fundamental issues to evaluate machine tools performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. This proposed algorithm could be used in the designed virtual machining system. The system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF

A Study on the Cutting Characteristics and Analysis by a FEM in the Machining of Ti-6Al-4V alloy (Ti-6Al-4V 합금의 절삭특성과 FEM 해석 비교에 관한 연구)

  • 김남용;홍우표;이동주
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.29-35
    • /
    • 2001
  • The cutting characteristics of Ti-6Al-4V alloy and total wear when machining Ti-6Al-4V alloy was studied to understand the machining characteristics. This material is one of the strong candidate materials present and future aerospace or met ical applications. Nowadays their usage has already been broaden to commercial applications such as golf club head, finger rings and many decorative items. Anticipating the general use of this material and development of the titanium alloy in domestic facilities, the review and the study of the machining parameters far those alloys are deemed necessary. This study is concentrated to the machining parameters of the Ti-6Al-4V alloy due to their dominant position in the production of tita mum alloys.

  • PDF

A study on the surface integrity of machined surface layer in machining hardened STD11 steel (경화처리된 합금공구강의 절삭에서 가공 표면층의 표면성상에 관한 연구)

  • Noh, Sang-Lai;An, Sang-Ook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.153-160
    • /
    • 1994
  • In this study, residual stress and surface roughness were investigated experimentally to evaluate surface integrity on surface layer machined by CBN, ceramics and WC cutting tools. When machining difficult-to-cut material (hardened STD11 steel $H_{R}$C 60), residual stresses remaining in machined surface layer were mainly compressive. The increase of flank wear caused a shift of the compressive residual stress maximum to greater workpiece depths, but the changes did not penetrate the workpiece beneath a depth of 300 .mu. m. Surface roughness was influenced considerably by variations of the cutting speed and feed. In machining hard material, CBN and A1$_{2}$ $O_{3}$ ceramics cutting tool materials proved significantly superior to mixed ceramics A1$_{2}$ $O_{3}$-TiC and WC in evaluation of surface integrity.y.

  • PDF

Machinability Evaluation according to Variation of Endmill Shape for High Speed Machining (고속가공용 엔드밀 형상변화에 따른 가공성 평가)

  • Kang, Myung-Chang;Kim, Jeong-Suk;Lee, Deuk-Woo;Kim, Kwang-Ho;Ha, Dong-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.133-138
    • /
    • 2002
  • The technique of high speed machining is widely studied in machining fields, because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool fur high speed machining in not close behind that of machine tool. In this study, 10 types flat endmill is prepared for obtaining data according to tool shape. Especially, we concentrated in helix angle, number of cutting edge and rake angle. Cutting condition is selected for several experiments and measuring cutting farce, tool life, tool wear and chip shape according to cutting length. 3-axis cutting farces are acquired from the tool dynamometer with high natural frequency, as the conventional tool dynamometer (9257B, Kistler) has cannot measure the state of high frequency force. Particularly, we found out that the axial cutting force waveform has a good relation with tool wear features. And flow is interrupted at the beginning of cutting by the decrease of rake angle. By above results. it is suggested the endmill tool with 45$^{\circ}$helix angle, 6 cutting edge and -15$^{\circ}$rake angle is suitable for high speed machining.

A study on abrasive wear characteristics of side plate of FRP ship (FRP 선박 외판재의 연삭마모 특성에 관한 연구)

  • Kim, Byung-Tak;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.3
    • /
    • pp.250-256
    • /
    • 2008
  • Generally the side plate materials of FRP ship are composed of glass fiber and unsaturated polyester resin composites(GFRP composites). In this study, the effect of applied load and sliding speed on friction and wear characteristics of these materials were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and wear rate of these materials for SiC abrasive paper were determined experimentally. The cumulative wear volume showed a tendency to increase nonlinearly with increase of sliding distance and was dependent on applied load and sliding speed for these composites. The friction coefficient of GFRP composites was increased as applied load increased at same sliding speed in wear test. It was verified by SEM photograph of worn surface that major failure mechanisms were microfracture, deformation of resin, cutting and cracking.

A Basic Study on Burr Formation of Micro Cutting Process with the Ferrous Metal at tow Temperature (철계 금속 마이크로 절삭 가공시 저온 환경에서의 버 발생에 관한 기초연구)

  • Kim, G.H.;Kim, D.J.;Sohn, J.I.;Yoon, G.S.;Heo, Y.M.;Cho, M.W.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.166-171
    • /
    • 2009
  • In this paper, a basic study on micro cutting process with SM20C at low temperature environment was performed. In macro cutting fields, the cryogenic cutting process has been applied to cut the refractory metal but, the serious problem may be generated in micro cutting fields by the cryogenic environment. However, if the proper low temperature is applied to micro cutting area, the cooling effect of cutting heat is expected. Such effect can make the reduction of tool wear and burr formation. For verifying this possibility, the micro cutting experiment at low temperature was performed and SEM images were analyzed.

A Study on the Polishing Moving Type and the Cutting Characteristics of Magnetic Polished Tool (자기연마공구의 연마운동방식과 절삭특성에 관한 연구)

  • Jung, Sung-Yong;Yang, Sun-Cheul;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.2
    • /
    • pp.28-34
    • /
    • 2008
  • Recently, with the development of high speed machining technology for difficult-cutting materials, to improve the cutting performance of cutting tool, fine surface finish of complex shape tools using magnetic polishing technology is in high demand. This study is, therefore, discussed and compared the cutting characteristics of polished tools by the adopted various magnetic polishing moving types a point of view the cutting forces and the tool life. Moreover, the practicality of magnetic polished tools in the wide range cutting conditions is investigated. From obtained results, It is confirmed that the CW(clockwise) revolution and oscillation type as the polishing moving type is proper and magnetic polished tool shows the excellence in high cutting speed range.

A Study on the Characteristics of AE Signals of Tool Failure for Continuous and Interrupted Cutting under CNC Lathe (CNC선반에서 연속절삭 및 단속절삭시 공구손상에 대한 음향방출신호 특성 연구)

  • Kim, T.B.;Kang, S.Y.;Kim, W.I.;Lee, Y.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.136-142
    • /
    • 1996
  • Automatic monitoring of cutting process is one of the most important technology in machining. AE sensing technology has been applied to monitoring process and proved to be effective in detecting tool abnor- malities such as tool wear and fracture. In this experimental study. AE signals were detected from the tool holder for continuous and interrupted cutting, which obtained from changing workpice material configuration, under control of constant cutting speed from CNC lathe. From statistical and frequency analysis, the AE signals were analyzed to obtaining the characteristics of continuous and interrupted cutting conditions and tool failure. The Kurtosis values decreased but RMS voltages increased as the cutting speed increased, in both continuous and interrupted cutting. RMS voltage is suddenly increased but Kurtosis value is suddenly decreased when tool failure condition. Power spectrum density of AE signals when tool failure reaches extreme value around 0.065 cycles/ .mu. m.

  • PDF

A Study on the Cutting Fluid Effectiveness in Mechanical and Thermal Terms Simultaneously for Environmentally Conscious Machining (환경친화적 기계가공을 위한 기계적$\cdot$열적측면에서의 절삭유제 사용효과에 관한 연구)

  • Mo, Yong-Gu;Hwang, Jun;Jung, Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.90-97
    • /
    • 2000
  • This paper presents a methodology to analyze the cutting fluid effectiveness in mechanical and thermal terms simultaneously using finite element method and experimental work. Cutting fluid plays many roles in metal cutting process. Mechanically-thermally coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, it can be explained that the critical behavior of cutting fluids will be able to apply optimal environmentally conscious machining process.

  • PDF