• Title/Summary/Keyword: Cutting tools

Search Result 642, Processing Time 0.023 seconds

Cutting Characteristics Comparison between CBN and Coated CBN Tools in Turning SCM440 (SCM440의 선삭가공시 CBN공구와 CBN코팅공구의 절삭특성 비교)

  • Bang, H.I.;Shin, H.G.;Oh, S.H.;Kim, T.Y.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.31-37
    • /
    • 2011
  • The purpose of this study is to investigate cutting characteristics and wear behavior in SCM440 steel with different cutting tools, CBN(Cubic Boron Nitride) and coated CBN. During the test coated CBN tool especially with TiAlN showed better wear resistance behavior than orginal CBN tools. In the interrupted cutting condition, axial groove affected tool surface with impact force during the turning operation. For advantageous turning parameter in the interrupted process it is recommendable that lower speed. Also surface roughness showed better behavior in the coated CBN tool conditions than normal CBN conditions. Mainly this is caused by reduced friction between material and tool surface with coated layer.

A Study on Heat Generation and Machining Accuracy According to Material of Ultra-precision Machining (초정밀가공의 재질에 따른 발열과 가공정밀도에 관한 연구)

  • Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.63-68
    • /
    • 2018
  • At present, ultra-precision cutting technology has been studied in Korean research institutes, focusing on development of ultra-precision cutting tool technology and ultra-precision control engineering. However, the developed technologies are still far behind advanced countries. It focuses on metals including aluminum, copper and nickel, and nonmetals including plastics, silicone and germanium which require high precision while using a lathe. It is hard to implement high precision by grinding the aforementioned materials. To address the issue, the ultra-precision cutting technology has been developing by using ultra-precision machine tools very accurate and strong, and diamond tools highly abrasion-resistant. To address this issue, this study aims to conduct ultra-precision cutting by using ECTS (Error Compensation Tool Servo) to improve motion precision of elements and components, and compensate for motion errors in real time. An IR camera is used for analyzing cutting accuracy differences depending on the heat generated in diamond tools in cutting to examine the heat generated in cutting to study cutting accuracy depending on generated heat.

Analysis of Dynamic Characteristics of End Mill for High Speed Cutting (고속가공용 엔드밀의 동특성 분석)

  • 임경화;유중학;이우영;장헌탁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.341-346
    • /
    • 2004
  • Performance Evaluation of end mills for high speed cutting has been performed in a view of dynamic characteristics and noise-vibration under operation. The tools tested in this research consist of three foreign country made and one korean made. In addition, numerical models using finite element method are established, which are confirmed by experimental results. The evaluation results has been feedback for developing high performance end mills fur high speed cutting tools.

  • PDF

Analysis of Dynamic Characteristics of End Mills for High Speed Cutting (고속가공용 엔드밀의 동특성 분석)

  • 장헌탁;유중학;이우영;임경화
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.478-483
    • /
    • 2003
  • Performance Evaluation of end mills for high speed cutting has been performed in a view of dynamic characteristics and noise-vibration under operation. The tools tested in this research consist of three foreign country made and one korean made. In addition, numerical models using finite element method are established, which are confirmed by experimental results. The evaluation results has been feedback fur developing high performance end mills for high speed cutting tools.

  • PDF

A Study on the Machinability of Fine Ceramics (($Al_2O_3$)) (파인 세라믹 ($Al_2O_3$)의 被削性에 관한 硏究)

  • 김성겸;이용성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.604-610
    • /
    • 1989
  • This paper is concerned with the machinability of fine ceramics(Al$_{2}$O$_{3}$) by using sintered diamond tools. For this purpose, ceramics cutting experiments under various cutting conditions such as cutting speed, feed rate, and others were carried out. The main results are follows : (1) During the cutting of fine ceramics, the used tools were found to be slightly chattering at cutting speed of 70m/min, and at cutting speed of higher than this I found the fine ceramics difficult to be cut. (2) When I used a tool with large nose radius, there occured a small amount of wear on the flank of the tool. However, at the early stage of fine ceramics cutting, the tools with smaller nose radii were required mainly to prevent the chipping of the ceramics. (3) When the materials were dry-cut, the appropriate cutting speel was found to be lower than 40m/min, and when the materials were dry-cut, I could cut them without any difficulty even at the speed of 70m/min, the surface roughness of ceramics cut at the speed of 70m/min was considerly fine. (4) It is generally believed that the principal cutting force is the largest in the case of steels cutting, but I found the thrust cutting force to be larger than any other cutting forces in the case of ceramics cutting.

Cutting Forces and Tool Wear Characteristics in Hard Turning using CBN Tools (CBN 공구를 이용한 선삭에서의 절삭력과 공구마모 특성)

  • Kim, Tae-Young;Sugita, I. Ketut Gede;Shin, Hyung-Gon;Kim, Jong-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • Hard turning on modern lathes becomes a realistic replacement for many grinding applications. Because CBN tools are expensive, excessive tool wear can eliminate economic advantages of hard turning. This paper describes a study of investigating the cutting force and the characteristics of tool wear in hard turning of hardened steels, AISI 52100. Cutting forces generated using CBN tools have been evaluated. The radial thrust cutting force was the largest among three cutting force components. It increased dramatically as a result of progressive tool wear. On the other hand, the result shows significantly different wear characteristics between high CBN and low CBN. Backpropagation neural network was used for the estimation of tool wear. The networks were achieved the reliability of 96.3% even when the spindle speed and feed rate are changed.

  • PDF

Detection of the Cutting Tool's Damage by AE Signals for Austempered Ductile Iron (오스템퍼링 처리한 구상흑연주철의 AE신호에 의한 절삭공구 손상의 검출에 관한 연구)

  • Jun, T.O.;Park, H.S.;Ye, G.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.25-31
    • /
    • 1996
  • In this paper, three different types of commercial tools -P20, NC123K and ceramic- have been used to cut austempered ductile iron(ADI). In the austempered condition the materials are hard, strong and difficult to machine. Thus, we selected a optimum tool material among three different types of used tools in machining of austempered ductile iron. It was used acoustic emission (AE) to know cutting characteristic for selected tool and investigate characteristic of AE signal according to cutting condition and relationship between AE signal and flank wear land of the ceramic tool. The obtained results are as follows ; (1) The ceramic tool among three different types of tools is the best in machining austempered ductile iron. (2) In case of ceramic tool, the amplitude level of AE signal(AErms) is mainly affected by cutting condition and it is proportional to cutting speed. (3)There have been the relationship of direct proportion between the amplitude level of AE signal and flank wear land of the tool. (4) It was observed that the value of AErms was only affected by cutting speed. Therefore it is possible to in-process detec- tion of ceraic tool's wear in case the initial value of AErms at each cutting speed decided.

  • PDF

Analysis of the Effects of Cutting Force and Surface Roughness in the Cutting Conditions of Plasma Source Ion Implantation Tools (플라즈마 이온주입 공구의 가공조건이 절삭력과 표면 거칠기에 미치는 영향 분석)

  • Kang, Seong-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.755-760
    • /
    • 2012
  • In this study, three dimensional cutting force components and surface roughness appeared in high speed cutting by using tungsten carbide endmill tools implanted ion or not found mutual relations through several analysis of statistical dispersion. It is showed that cutting force(Fx) is affect with spindle speed and feed rate, cutting force(Fy) is affect with spindle speed and ion implantation time and cutting force(Fz) is affect with feed rate in interaction through the statistical method of ANOVA of cutting force and surface roughness, it is analyzed that it is affected of spindle speed and feed rate in surface roughness.

Micro End-Mill Machining Characters and its Applications (마이크로 앤드밀의 가공특성분석 및 응용가공 연구)

  • Jae, Tae-Jin;Lee, Eung-Sook;Choi, Doo-Sun;Hong, Sung-Min;Lee, Jong-Chan;Choi, Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.589-592
    • /
    • 2003
  • In the machining process of micros shape by using high-precision machining system and micro end-mill, it is important for machining characters of tools to be grasped in order to stably use tools of micro end-mill. In this study. we carried out an analytical experiment of basic machining features by using end-mill tools for the purpose of damage prevention and manufacture of high quality when the tools of micro end-mill are used. This experiment used a micro machining system with high precision and a variety of end-mill tools commercialized from tens to hundreds microns in diameter. To establish an optimal machining condition without tool damage, cutting force was analyzed according to the changes of tool diameter and cutting conditions such as cutting speed. feed rate, depth of cut. And an examination was performed for the shape and surface illumination of machining surface according to the changes of machining conditions. Based on these micro machining conditions, micro square pillar, cylinder shaft. thin wall with high aspect ratio, and micro 3-D structures such as micro gear and fan were manufactured.

  • PDF

Machinability of CBN Tools in Interrupted Milling Process of Die & Mold Steels with High Hardness (고경도 금형강 단속 밀링절삭에 대한 CBN 공구의 가공 성능)

  • Song, Jun-Hee;Mun, Sang-Don
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.651-659
    • /
    • 2010
  • When high-speed interrupted cutting is carried out for die and mold steels with high hardness, CBN tools manifested a significantly longer wear life than carbide, ceramic, or cermet tools in an experiment of face milling characteristics. In addition, it was also found that they secured a stable surface roughness within a range of 1.6 S~6.3 S, an acceptable range for precision machining for polished machining parts. And it makes them acceptable in the precision machining field, except in industries where very high machining accuracy is required. In the high hardness interrupted cutting, it was advantageous to perform a negaland treatment and a honning treatment on the tools' cutting edge to extend tool life and surface roughness. Also, severe crater development was found on the sloped face in CBN tools following high-speed machining. This caused the cutting edge to be weakened and damaged, and ultimately resulted in a shorter tool life. Finally, as a result of EDX mapping inspection, Cr component was detected evenly on the entire crater wear area, which can be included only in STD 11.