• Title/Summary/Keyword: Cutting temperature

Search Result 574, Processing Time 0.031 seconds

Machinability Evaluation of CBN Ball End Milling in Die & Mold Steels with High Hardness (고경도 금형강의 CBN 볼 엔드밀 가공에서 가공성 평가)

  • Kim, Hong-Gyoo;Sim, Jae-Hyung;Lee, Jong-Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.119-126
    • /
    • 2007
  • Generally, the machinability of materials that have a good mechanical properties is poor. The material having a high strength, high toughness in high temperature and wear resistance, it is difficult to remove a chip from workpiece. STD11 and NAK80 are kinds of these materials and these materials can be used in many industrial fields. But it is limited in use because of high cost and poor machinability. In this experimental study, the cutting of STD11 and NAK80 were used to decide the machinability and the tool shape of CBN ball end mill. From the results, the CBN ball end mill is verified that the estimated cutting edge shape of rake angle 30 degree has consistent effect on the tool wear and cutting force.

Effect of Machining on Hard Anodizing Surface of Aluminum (절삭가공이 알루미늄 경질 아노다이징 피막에 미치는 영향)

  • Kim, Su-Jin;Mun, Jeongil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.87-92
    • /
    • 2022
  • The Al3003 aluminum plate was cut by grinding, milling, sawing, and shearing, and the hard-anodizing surface of the material was investigated. Large burrs were formed during grinding and milling. The brittle anodized film split and migrated along the deformed aluminum surface. During shearing, the hard-anodized film on the blade entry surface cracks and slides along the deforming aluminum. The cutting heat increased the ductility of the aluminum and further promoted burr formation. The oil-based coolant suppressed burrs and prevented chips from sticking to the endmill. It is better to avoid the high cutting speed and slow material feed rate conditions, which increase the cutting temperature and burr in the band saw.

Effects of Media and Temperatures on Micro Stem Cutting of Dendrobium nobile 'Hamana Lake Dream' × 'No. 55' in Vitro (Dendrobium nobile 'Hamana Lake Dream' × 'No.55'의 기내 줄기삽목에 미치는 배지의 종류와 온도의 영향)

  • Yoon, Jin-Young;Nam, Yu-Kyeong;Lee, Jong-Suk;Kim, Hyun-Jin
    • Journal of agriculture & life science
    • /
    • v.44 no.3
    • /
    • pp.23-30
    • /
    • 2010
  • The optimal growth condition of in vitro stem cutting of Dendrobium nobile 'Hamana Lake Dream' ${\times}$ 'No. 55' was investigated. Among various media and their concentrations, MS media had better effect on the growth of micro stem cutting than Hyponex media in all concentration levels except stem length. The activated charcoal concentration in MS media showed different effects on number of stem and root, leaf length, and fresh weight: the most effective in the range of 0.1 to 1.0 g/L and barely effective above 2.0 g/L. Addition of agar 5 g/L, sucrose at 40 g/L, and peptone at 1 g/L to MS media increased significantly stem length, leaf width, and fresh weight, internode length and number of roots, and the number of stem and leaves. On the other hand, addition of gelite with any concentration had no effect on the growth of micro stem cutting compare to that of control. The optimal temperature for growth of micro stem cutting was $28^{\circ}C$. Under the same temperature, MS medium was better than Hyponex medium for the growth of stem. In addition, sucrose at 40 g/L was the most effective on growth at $28^{\circ}C$.

Influence of Surface Roughness of Tools on the Friction Stir Welding Process

  • Hartmann, Michael;Bohm, Stefan;Schuddekopf, Sven
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.22-28
    • /
    • 2014
  • Most publications on friction stir welding describe phenomena or results with given process parameters like feed rate, rotation speed, angle and depth of penetration. But without a complete documentation of tool design, the results under the same process parameters are completely different. For this purpose, the Institute of Cutting and Joining Manufacturing Processes (tff), University of Kassel investigated the influence of tool roughness on the friction stir welding process. Therefore a defined surface finish was produced by turning and die sinking. As basis of comparison the constant parameters were rotation speed, feed rate, tilt angle and a heel plunge depth. Sound butt-welds were produced in aluminium alloy 6082 (AlMgSi1) with 1.5 mm sheet thickness with a turned reference tool with a surface of $Ra=0.575{\mu}m$ in position controlled mode. The surfaces are manufactured from a very fine to a very rough structure, classified by the VDI-classes with differences in the arithmetical mean roughness. It can be demonstrated with the help of temperature measures, that less heat is generated at the surfaces of the shoulder and the pin by the higher roughness due to lower active friction contact surface. This can also be seen in the resulting wormhole defects.

The effect of drill design on stability and efficacy of dental implants (치과용 임플란트의 안전성과 유효성에 대한 드릴 디자인의 효과)

  • Yoon, Ji-Hoon;Jeon, Gye-Rok;Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo
    • The Journal of the Korean dental association
    • /
    • v.53 no.2
    • /
    • pp.132-142
    • /
    • 2015
  • Purpose : The objective of this research was to investigate an optimization of drill design factors for implant stability and efficacy through comparative evaluation by the cutting time, heat generation and initial stability. Materials and Methods : Three design factors were considered for the purpose of drill design optimization; the number of flute(2 flute, 3 flute), helix angle($15^{\circ}$, $25^{\circ}$) and drill tip shape(straight, 2-phase). Design factors were selected through comparative evaluation by temperature change, cutting time and ISQ value. Results : Heat generation and cutting time are influenced by all design factors(p<0.05). Drill tip shape was the only factors which influenced to the largest initial stability(p<0.05). Conclusion : Drills with 2 flutes, 2-phase formed drill tip, and 25 degrees of helix angle exhibit a better performance than other design.

Fabrication of spectacle lens cutting materials (렌즈 절삭공구 재료의 제조)

  • Lee, Young-II
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.111-114
    • /
    • 2001
  • This paper presents the influence of the additive composition on flexural strength and hardness of SiC-TiC composites materials for spectacle lens cutting materials. The materials were hot-pressed at $1800^{\circ}C$ and subsequently annealed at $1910^{\circ}C$ for 3h. The heating rate was $15^{\circ}C/min$ and the cooling rate about $25^{\circ}C/min$ in from the sintering temperature to $1300^{\circ}C$. The growth of particles of spectacle lens cutting materials was analysed by SEM and crystalline phases were discussed by x-ray diffractometry. Typical fracture toughness and hardness of materials for spectacle lens cutting were $6.1MPa{\cdot}m^{1/2}$ and 14.9 GPa, respectively.

  • PDF

Cutting force regulation of microdrilling using the sliding mode control (슬라이딩 모드 제어를 이용한 마으크로 드릴의 절삭력 제어)

  • 정만실;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.842-846
    • /
    • 1997
  • Micro-hole drilling (holes less than 0.5 mm in diameter with aspect ratios larger than 10) is gaining increased attention in a wide spectrum of precision production industries. Alternative methods such as EDM, laser drilling, etc. can sometimes replace mechanical micro-hole drilling but are not acceptable in PCB manufacture because they yield inferior hole quality and accuracy. The major difficulties in micro-hold drilling are related to wandering motions during the inlet stage, high aspect ratios, high temperature,etc. However, of all the difficulties, the most undesirable one is the increase of drilling force as the drill penetrates deeper into hold. This is caused mainly by chip related effects. Peck-drilling is thus widely used for deep hole drilling despite the fact that it leads to low productivity. Therefore, in this paper, a method of cutting force regulation is proposed to achieve continuous drilling. A proportional plus derivative (PD) and a sliding modecontrol algorithm will be implemented for controlling the spinle rotational frequeency. Experimental results will show that sliding mode control reduces the nominal cutting force and its variation better than the PD control, resulting in a number of advantages such as an increase in drill life, fast stabilization of the wandering motion, and precise positioning of the hole.

  • PDF

Analysis on the Effects of Tool Rake Angle and Helix Angle of a Flat End-mill in the Milling of Ti-alloy (티타늄 합금의 밀링가공에서 평 엔드밀의 헬릭스각과 경사각의 영향 분석)

  • Ye, Dong-Hee;Koo, Joon-Young;Park, Young-Koon;Kim, Jeong-Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.508-513
    • /
    • 2015
  • In this study, the effect of the helix angle and rake angle of a flat end-mill in the milling of titanium alloy was investigated. Tool shape parameters such as helix angle and rake angle affect the cutting force, cutting zone temperature, vibration, and chip flow mechanism, which in turn determine tool life, surface integrity, and dimensional accuracy of the milling process. To investigate the effect of the helix and rake angles, a certain range of parameters was selected, and three-dimensional tool models were generated for finite element analysis (FEA) for each case. The cutting force and pressure on the tool flank face and rake face were investigated by FEA. Further, several tool models were proposed for machining tests. The cutting force characteristics were investigated by the machining tests.