• Title/Summary/Keyword: Cutting system

Search Result 1,891, Processing Time 0.037 seconds

A Cutting Stock Problem in the Sheet Steel Cutting Production (강판 절단 생산에서의 CSP)

  • 오세호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.35
    • /
    • pp.47-52
    • /
    • 1995
  • The aim of this paper is to suggest the cutting stock problems which are two-dimensional in form, but can be treated as the optimization methods for one-dimensional cutting stock problem by exploiting the length requirement of the products. The solution method consists of two stages. The first calculates the number of roll pieces of each size. Next, 1-dimensional cutting stock model is set up. One heuristic method to calculate the number of each roll is suggested. The trim loss minization criteria are used to design the objective function. This model can be solved by the conventional cutting stock procedures based on enumerating the possible cutting patterns.

  • PDF

Study on Process Monitoring of Elliptical Vibration Cutting by Utilizing Internal Data in Ultrasonic Elliptical Vibration Device

  • Jung, Hongjin;Hayasaka, Takehiro;Shamoto, Eiji
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.571-581
    • /
    • 2018
  • In the present study, monitoring of elliptical vibration cutting process by utilizing internal data in the ultrasonic elliptical vibration device without external sensors such as a dynamometer and displacement sensor is investigated. The internal data utilized here is the change of excitation frequency, i.e. resonant frequency of the device, voltages applied to the piezoelectric actuators composing the device, and electric currents flowing through the actuators. These internal data change automatically in the elliptical vibration control system in order to keep a constant elliptical vibration against the change of the cutting process. Correlativity between the process and the internal data is described by using a vibration model of ultrasonic elliptical vibration cutting and verified by several experiments, i.e. planing and mirror surface finishing of hardened die steel carried out with single crystalline diamond tools. As a result, it is proved that it is possible to estimate the elements of elliptical vibration cutting process, e.g. tool wear and machining load, which are important for stable cutting in such precision machining.

A Study on feedrate Optimization System for Cutting Force Regulation (절삭력 추종을 위한 이송속도 최적화 시스템에 관한 연구)

  • 김성진;정영훈;조동우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.214-222
    • /
    • 2003
  • Studies on the optimization of machining process can be divided into two different approaches: off-line feedrate scheduling and adaptive control. Each approach possesses its respective strong and weak points compared to each other. That is, each system can be complementary to the other. In this regard, a combined system, which is a feedrate control system fur cutting force optimization, was proposed in this paper to make the best of each approach. Experimental results show that the proposed system could overcome the weak points of the off-line feedrate scheduling system and the adaptive control system. In addition, from the figure, it can be confirmed that the off-line feedrate scheduling technique can improve the machining quality and can fulfill its function in the machine tool which has a adaptive controller.

Effects of Various Growing Conditions of the Mat-type Seedlings on the Cutting forces for ower Rice Transplanter. (Mat묘의 육모조건이 이앙기의 소요전단력에 미치는 영향)

  • 허민근;김성래
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.48-57
    • /
    • 1979
  • In order to obtain a standard reference for designing an adequate power rice transplanter, the cutting forces depending upon variety of seedling, sowing density, seedling age and soil moisture content of mat-type seedling were measured by the rice transplanter installed with force measuring device of dynamic strain gage system in the laboratory. The result of this study are summarized as follows : 1. Cutting velocity and acceleration transplanting hoe obtained from jinematic analysis of planting mechanism was 1.32m/sec and 81.5m/$sec^2$ when planting crank-shaft rpm was 160. 2. Little difference between cutting forces on 30-days old seelings of japonica and Indica type was observed, as the cutting forces determined were 2.0kg per hill for Japonica type and 2.1kg per hill for Indica type. 3. Cutting forces determined on 40-days old seedlings were 2.5kg, 2.3kg, 3.1kg and 2.9kg per hill for Milyang No.15, Tongil, Akibare and Milyang No.23 compared to the other varieties. 4. The cutting force was not greatly affected by the sowing densities , only five percent of differences were observed epending upon the sowing densities. 5. Cutting forces were 2.7kg and 2.0kg per hill on 40-days old seedlings and 30-days old seedlings respectively. About 38 percent of more forces was required in cutting 40-days old seedling than in cutting 30-days old seedlings. 6. More cutting forces were required as soil moisture content of mat-type seedling was decreased. 7. Root length after cutting by the planting hoe and their relationships with soil moisture content on 30-days old seedlings, are as follows ; $y=4.147-11.384x+ 28.854x^2$ where , $y$=root length after cutting. (cm) , $x$=soil ture content of mat type seedlings.(%, d.b.) 8. Cutting forces were varied with the width of cuttings ; those on 40-days old mat type seedlings were 2.7kg and 2.2kg per hill when cutting with 14 mm and 10mm of width respectively, about 32 percent of more forces was required when cuting with 14mm of width compared to 10mm of width.

  • PDF

Studies on Drilling and Cutting Characteristics for Granite Rocks Using Waterjets (워터젯을 이용한 화강암 천공과 절삭 특성에 관한 연구)

  • Oh, Tae-Min;Hong, Eun-Soo;Cho, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1338-1345
    • /
    • 2009
  • Although rock excavation is necessary for the effective utilization of urban space, most conventional rock excavation methods, including the blasting method, cause high noise and vibration. Meanwhile, if a high pressure waterjet system is applied to excavate underground spaces in urban areas, the public grievance can be reduced by low noise and vibration. In this study, an abrasive waterjet system is designed and developed to study the influence of various performance parameters such as jet pressure, nozzle traverse speed, stand-off distance, or abrasive feed rate on waterjet excavation performance in laboratory. Using the developed waterjet system, rock drilling characteristics are identified by measuring drilling depths as a function of the jet exposure time. The drilling depth linearly increases with increasing the jet exposure time(under 60sec). Rock cutting characteristics are also obtained with various jet pressures(1600~3200kg/$cm^2$) and nozzle traverse speeds(1.9~14.1mm/s): The cutting depth is nonlinearly related to the jet pressure and traverse speed. Indeed, the cutting depth increases with an increase in the jet pressure and a decrease in the nozzle traverse speed. This trend can be explained by energy transferring/loss mechanism.

  • PDF

Monitoring Machining Conditions by Analyzing Cutting-Force Vibration (절삭력 진동 분석에 의한 가공조건 모니터링)

  • Piao, Chunguang;Kim, Ju Wan;Kim, Jin Oh;Shin, Yoan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.839-849
    • /
    • 2015
  • This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration.

The Shear and Friction Characteristics Analysis of Inconel 718 during End-milling process using Equivalent Oblique Cutting System I -Up Endmilling- (등가경사절삭 시스템에 의한 Inconel 718 엔드밀링 공정의 전단 및 마찰특성 해석 I -상향 엔드밀링-)

  • Lee, Young-Moon;Yang, Seung-Han;Choi, Won-Sik;Song, Tae-Seong;Gwon, O-Jin;Choe, Yong-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.79-86
    • /
    • 2002
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting system. According to this analysis, when cutting Inconel 718, 61, 64 and 55% of the total energy is consumed in the shear process with the helix angle 30$^{\circ}$, 40$^{\circ}$ and 50$^{\circ}$ respectively, and the balance is consumed in the friction process. With the helix angle of 40$^{\circ}$ the specific cutting energy consumed is smaller than with the helix angle 30$^{\circ}$ and 50$^{\circ}$.

The Vibration Measurement of Boring Process by Using the Optical Fiber Sensor at inside of Boring Bar (광섬유 센서의 보링 바 삽입에 의한 진동측정)

  • Song, Doo-Sang;Hong, Jun-Hee;Guo, Yang-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.709-715
    • /
    • 2011
  • Chattering in cutting operations are usually a cumbersome part of the manufacturing process in mechanical. Particular, machining performance such as that of the boring process is limited by cutting condition at the movable components. Among various sources of chatter vibration, detrimental point in cutting condition is found a mechanical condition on overhang. It limits cutting speed, depth, surface roughness and tool wear failure as result because the all properties are varying with the metal removal process. In this case, we have to observe the resonance frequencies of a boring bar for continuous cutting. In the established research, boring bar vibration of cutting system has been measured with the aid of accelerometer. However, the inherent parameters of internal turning operations are severely limit for the real time monitoring on accelerometers. At this point, this paper is proposed other method for real time monitoring during continuous cutting with optical fiber at the inside of boring bar. This method has been used a plastic fiber in the special jig on boring bar by based on experimental modal analysis. In this study, improvement of monitoring system on continuous internal cutting was attempted using optical fiber sensor of inside type because usually chattering is investigated experimentally measuring the variation in chip thickness. It is demonstrated that the optical fiber sensor is possibility to measure of chattering with real time in boring process.

A Study about Experimental Evaluation of an Ultrasonic Surgery Unit for Bone-cutting (골 절삭용 초음파 수술기의 실험적 평가에 관한 연구)

  • Sa, Min-Woo;Shim, Hae-Ri;Ko, Tae-Jo;Lee, Jong-Min;Kim, Jong Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In the dentistry field, an ultrasonic surgery unit is widely used in bone cutting and scaling to reduce operation time and minimize hemorrhage. The purpose of this study was to evaluate bone cutting and the effect of a specimen's temperature on the two-type ultrasonic surgery unit using a handpiece moving system(HMS). A HMS, which can cut the bone, was developed to perform the experimental procedure with precision of motion control. Bone specimens were prepared from a combination of epoxy-hardener and cortical bone of bovine leg. Through the bone-cutting experiment, the cutting depth was evaluated by not only scanning electron microscopy, but also Vernier calipers. Also, the temperature distribution was measured by a thermo-graphic camera. This study may be applied methodically in various experimental evaluations on a performance test by a HMS.

The Effect of Tool Path on the Cusp Height in Ball End Milling of Cylinderical Surface (볼엔드밀 가공시 공구경로가 Cusp의 크기에 미치는 영향)

  • 윤희중;박상량;박경호;박동삼
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.944-947
    • /
    • 2000
  • Sculptured surface machining plays a vital role in the process of bring new products to the market place. A great variety of products rely on this technology for the production of the dies and moulds used in manufacturing. And, the use of CNC machines and CAD/CAM system has become a vital parts of product development process. The propose of this study is to investigate the effect of cutting parameters on the machinability such as surface roughness and cusp generated in the machining of sculptured surface on a three-axis CNC machining center using the CAD/CAM system. Experimental result showed that: In step down cutting, as the inclined angle of surface became smaller, the cusp height appeared higher. On the other hand, in step over cutting, as the inclined angle of surface became larger, the cusp height appeared higher. In the point of precision machining, step over cutting was more effective. For the minimization of cusp height, step down cutting was effective in larger inclined surface, but step over cutting in smaller inclined surface.

  • PDF