• Title/Summary/Keyword: Cutting rate.

Search Result 1,026, Processing Time 0.03 seconds

A Study on the Surface Roughness of Aluminum Alloy by Response Surface Nethod (응답표면법에 의한 알루미늄합금의 가공면 거칠기에 관한 연구)

  • Gu, Ja-Sung;Kim, Won-Il;Lee, Yun-Kyung;Wang, Duk-Hyun;Park, Ji-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.1
    • /
    • pp.31-36
    • /
    • 2005
  • The purpose of this experimental study is to gain equations for the prediction of surface roughness depending on the three major parameters(the cutting speed, the feed rate and the nose radius). It is the merit of Response Surface Methodology that the test time is reduced to minimum size and accurate analysis can be done. On this study, first, made specimen, Al 5052 BE material which is widely used in school and cut the specimen with coated tungsten carbide tools, by varying the cutting conditions, such as the cutting speed, the feed rate and the nose radius. In conclusion, the surface roughness was most greatly influenced by the feed rate. And Surface Roughness equation gained by experiment is as followed $$R=58.2\;v^{-0.22}f^{1.7}r^{-0.66}$$.

  • PDF

The Study on Burr Removal Rate Along the Cutting Radial Distance in U-type Flow Channel (절삭 반경에 따른 U-type 유로 형상의 버 제거율에 관한 연구)

  • Son, Chul-Bae;Lee, Jung-Hee;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.8-13
    • /
    • 2019
  • As increasing demand for precise machining in advanced disciplines, especially in semi-conductor, aeronautical and automotive industries, the magnetic abrasive deburring(MAD) which is able to eliminate micro-sized burr on complex surface in less time has drawn the attention in the last decades. However, the performance of MAD is subject to shape and size of a tool. Therefore, this study aim to identify deburring behavior of MAD in U-type flow channel by measuring the length rate of burr removal in radial distance of the cylindrical tool under four process factors. In order to evaluate the deburring effect of MAD on the surface, finishing regions are divided based on center of the circular cutting tool. As a results, it was defined that the amount of burr removal in a downward direction moving toward flow channel from the top surface was higher than upward direction. This is because the magnetic abrasives were detached from magnetic lines of force due to geometrical shape.

Quality Check Monitoring System for Advancing the Yield Rate based on Sensor (베어링 생산수율 향상을 위한 센서기반 품질 체크 모니터링 장치)

  • Xiang, Zhao;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • This paper presents the monitoring method of machining error and quality check to improve the productivity of boring manufacturing process. Machining error usually appears as the offset of spatial location of actual cutting path compared to ideal cutting path. In order to monitor an error of workpiece, multiple factors affecting quality of boring, such as distortion of workpiece, clamping error, radial rotation error of the spindle and motion error of machine tools, were took into account. To verify the productive quality, we propose the quality check system. The system based on IT convergence analyzes the process error rate and saves the analyzed data in memory. Also, these play important roles in detecting an inferior production goods and can decrease the production cost and loss of bearing.

Changes in Feed Value of Barley and Pea by Different Seeding Rates and Cutting Dates in Mixed Sowing Cultivation (보리와 완두의 혼파재배에서 혼파비율과 예취시기에 따른 사료가치의 변화)

  • Oh, Tae-Seok;Kim, Chang-Ho;Lee, Hyo-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.3
    • /
    • pp.279-286
    • /
    • 2009
  • This study carried out to find out feed value of barley plus pea mixture with different ratio and cutting date to got basic information when introduced the mixture as new cropping system in middle part of Korean peninsular. Dry matter (DM) yield increased as barley seeding rate was higher and showed the highest yield in the plots with barley 85% plus 15% ratio when harvested on May 16. There was no different in crude protein, available protein and digestible protein cutting on April 25 in every mixture, but the content increased with higher pea mixture rate after May 2. The content of acid detergent fiber (ADF) and neutral detergent fiber (NDF) increase coincided with higher barley rate and late cutting dates. But relative feed value (RFV) resulted in opposite trend. Higher pea ratio influenced increased content of total digestible nuterients (TDN), but decreased before May 9 cutting and increased after the next cutting regime. There was no statistical difference in P and Mg between sowing rate, but Ca increased at higher pea ratio and P, Ca, K decreased in all plots as harvests were delayed. The content of estimated net energy (ENE), net energy maintenance (NEM) and net energy gain (NEG) significantly increased with higher pea rate and earlier cutting. But net energy lactation (NEL) was no significant differences between seeding rates and cutting dates. In conclusion, mineral yield such as P, Ca, K and Mg showed the highest yield at barley plus pea ratio of 75 : 25 and energy yield of ENE, NEL, NEM, NEG and TDN was the highest at 85 to 15 mixture plots and DM yield, TDN yield, mineral yield such as P, Ca, K and Mg and energy yield of ENE, NEL, NEM, NEG were the highest on each treatment cutting on May 16.

Determination and Verification of Flow Stress of Low-alloy Steel Using Cutting Test (절삭실험을 이용한 저합금강의 유동응력 결정 및 검증)

  • Ahn, Kwang-Woo;Kim, Dong-Hoo;Kim, Tae-Ho;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.50-56
    • /
    • 2014
  • A technique based on the finite element method (FEM) is used in the simulation of metal cutting process. This offers the advantages of the prediction of the cutting force, the stresses, the temperature, the tool wear, and optimization of the cutting condition, the tool shape and the residual stress of the surface. However, the accuracy and reliability of prediction depend on the flow stress of the workpiece. There are various models which describe the relationship between the flow stress and the strain. The Johnson-Cook model is a well-known material model capable of doing this. Low-alloy steel is developed for a dry storage container for used nuclear fuel. Related to this, a process analysis of the plastic machining capability is necessary. For a plastic processing analysis of machining or forging, there are five parameters that must be input into the Johnson-Cook model in this paper. These are (1) the determination of the strain-hardening modulus and the strain hardening exponent through a room-temperature tensile test, (2) the determination of the thermal softening exponent through a high-temperature tensile test, (3) the determination of the cutting forces through an orthogonal cutting test at various cutting speeds, (4) the determination of the strain-rate hardening modulus comparing the orthogonal cutting test results with FEM results. (5) Finally, to validate the Johnson-Cook material parameters, a comparison of the room-temperature tensile test result with a quasi-static simulation using LS-Dyna is necessary.

Leaf Growth and Forage Yield in Three Cultivars of Orchardgrass (Dactylis glomerata L.) over Cutting Stages Ⅰ. Seasonal regrowth and anatomy of leaves (오차드그라스(Dactylis glomerata L.)品種들의 刈取에 따른 葉生長과 收量形成 Ⅰ. 오차드그라스 品種들의 季節別 葉의 再生과 組織形成)

  • Kim, Hoon-Kee;Lee, Ho-Jin
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.2
    • /
    • pp.104-109
    • /
    • 1988
  • A field experiment was conducted in order to investigate the seasonal changes of leaf grwoth and related characteristics in three cultivars of orchardgrass; Potomac, Kay and Sumas. The results were summarized as follows: 1. Leaf elongation was increased in a nearly linear phase during first and third cutting stages. It was increased slowly in early 10 days to 15 days after cutting and increased rapidly there-after during the rest cutting stages. In cultivars, Potomac was showed higher leaf elongation than other cultivars during all cutting stages. There was no difference of leaf width within cutting stages, but the leaf width of fall regrwoth was narrow. Sumas had relatively short and wide leaves. 2. Leaf dry weight and leaf area in first cutting stage were larger than others. Leaf area was increased rapidly form 15 days after cutting and leaf weight was increased rapidly from 20 days over all cutting stages. The increase in leaf area and dry weight were slow down after 30 days. 3. Number of epidermal cells was increased rapidly after cutting and the rate of increase was slow down after 30 days. In a cross section of leaf tissue, the part of mesophyll was occupied with about 60% of total area and larger area than other tissue, the part of mesophyll was occupied with about 60% of total area and larger area than other tissues. Leaf tissue had a large vacancy at early growth period after harvest and was filled gradually with mesophyll. This result was related to the increase of leaf dry matter.

  • PDF

The Effect of Minaral Nitrogen Fertilization on Grassland Production under Various Cutting Frequencies I. Dry matter yield and estimation of optimum rate of mineral nitrogen fertilization in orchardgrass(Dactylis glomerata L) (예취빈도에 따른 무기태 질소시비가 초지의 생산성에 미치는 영향 I. 오차드 그라스의 건물수량과 적정 질소시비 수준의 추정)

  • 조익환;이주삼;안종호
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.14 no.2
    • /
    • pp.69-75
    • /
    • 1994
  • This experiment was canied out to study the effect of cutting frequencies (3, 4 and 5 cuts per year) and mineral nitrogen fertilization on dry matter yields, in order to estimate optimum level of fertilizing mineral nitrogen in orchardgrass(Dacry1is glomerafa L.). The results are as follows: 1. Dry matter yields were the highest in the 1st cut at 3 cutting frequency and in the 2nd cut at 4 and 5 cutting frequencies, and they shared 49.7, 37.0 and 37.0% of annual dry matter yield respectively. 2. When only phosphorus and potassium were applied, annual dry matter yields were between 9.4 and 11.5 tons per ha and the highest yield was observed at 3 cutting frequency. 3. Dry matter yield in relation to fertilization of mineral nitrogen was highly increased when more nitrogen was applied as 360 kg per ha compared to 240 kg per ha at 3 cutting frequency. At 4 and 5 cutting frequencies, increases in dry matter yield, to large extent, were showed at 120 and 150 kg of nitrogen per ha(30 kg Nlcutlha) compared to no application of nitrogen. The efficiencies of mineral nitrogen fertilization (kg DM/kg N) were 28.0, 22.7 and 20.6 kg dry matter yields per nitrogen(kg) respectively). 4. At 4 and 5 cutting frequencies, dry matter yields were reduced when 360 kg and 300 kg of mineral nitrogen per ha(90 kg and 60 kg Nlcutlha) were applied respectively. 5. Particularly at 4 and 5 cutting frequencies of this study, maximum marginal yields reached at 129.9 kg and 148.0 kg of fertilizing mineral nitrogen per ha, and economical borden of mineral nitrogen fertilization were between 222.4 and 250.0 kg and between 244.8 and 276.8 kg respectively. At the same cutting frequencies, the highest dry matter yields were obtained at 365.4 and 433.8 kg of fertilizing mineral nitrogen respectively.

  • PDF

Machinability of ceramic and WC-Co green compacts (세라믹 및 초경합금 성형체의 피절삭성)

  • Lee, Jae-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1520-1530
    • /
    • 1997
  • Machining pressed compacts of ceramic and WC-Co materials can be the most cost effective way of forming the bodies prior to sintering when the required number of pieces is small. In this study, in order to clarify the machinability for turning, the $Si_3N_4$ and the WC-Co green compacts unsintered were machined under different cutting conditions with various tools. Absorbing chips by vacuum hose decreases tool wear. The tool wear becomes larger in the order of the ceramic, CBN and cemented carbide tools in machining the $Si_3N_4$ green compacts. In machining the WC-Co green compacts, the tool wear becomes larger in the order of the ceramic, cemented carbide and CBN tools. The land of cutting edge does not affect tool wear. When machining with cemented carbide tool, the tool wear i equal cutting length is nearly identical in spite of the increase of cutting spee, and the roughness of machined surface was the best in the cutting speed of 90 m/min. The tool wear decreases with the increase of rake angle and relief angle and with the decrease of nose radius. The machined surfaces become worse with the increase of feed rate and depth of cut, and with the decrease of rake angle and relief angle. The tool wear is not affected by the feed and depth of cut.

Characterization of Microscale Drilling Process for Functionally Graded M2-Cu Material Using Design of Experiments (실험계획법을 이용한 M2-Cu 기능성 경사 재료의 마이크로 드릴링 특성 평가)

  • Sim, Jongwoo;Choi, Dae Cheol;Shin, Ki-Hoon;Kim, Hong Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.502-507
    • /
    • 2015
  • In this study, a microscale drilling process was conducted to evaluate the cutting characteristics of functionally graded materials. A mixture of M2 and Cu powders were formed and sintered to produce disk specimens of various compositions. Subsequently, a microscale hole was created in the specimen by using a desktop-size micro-machining system. By using design of experiments and analysis of variance, it was found that the M2-Cu composition, spindle speed, and the interactions between these two factors had significant effects on the magnitude of cutting forces. However, the influence of feed rate on the cutting force was negligible. A mathematical model was established to predict the cutting force under a wide range of process conditions, and the reliability of the model was confirmed experimentally. In addition, it was observed that increasing the wt% of Cu in an M2-Cu specimen increased the high-frequency amplitude of cutting forces.

Integrated NURBS Surface Interpolator Considering Both Rough and Finish Cuts (황삭 및 정삭을 고려한 통합형 NURBS 곡면 인터폴레이터)

  • Koo, Tae-Hoon;Jee, Sung-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1958-1966
    • /
    • 2003
  • Three-axis CNC surface machining entails a series of processes including rough cutting, intermediate cutting and finish cutting for a reference surface defined in CAD/CAM. This study is targeting development of an integrated NURBS surface interpolator that can incorporate rough, intermediate and finish cutting processes. In each process, volume to be removed and cutting condition are different according to the shape of a part to be machined and the reference surface. Accordingly, the proposed NURBS surface interpolator controls motion in real-time optimized for the machining conditions of each process. In this paper, a newly defined set of G-codes is proposed such that NURBS surface machining through CNC is feasible with minimal information on the surface composition. To verify the usefulness of the proposed interpolator, through computer simulations on NURBS surface machining, total machining time, size of required NC data and cutting force variations are compared with the existing method.