• Title/Summary/Keyword: Cutting rate.

Search Result 1,026, Processing Time 0.025 seconds

Finite Element Analysis of an Orthogonal Cutting Process with Low Speed (2차원 저속절삭에 대한 유한요소 해석)

  • Kim, Kug-Weon;Ahn, Tae-Kil;Lee, Woo-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.10-15
    • /
    • 2006
  • An introduction to orthogonal cutting model by FEM is given, followed by a review of similar work. The cutting process is treated as quasi-static and strain rate insensitive, so the model is applicable only to low speed cutting operation. Chip separation is accomplished along a predefined cutting path by means of an element death procedure. Contact elements with friction capability are used to model the interaction between the tool and the workpiece. FEM results are compared with cutting experiments with low speed for brass, and good correlations are found.

  • PDF

A Study on the Modeling for Cutting Force (엔드밀 가공에서의 절삭력 모델링에 관한 연구)

  • 김성청
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.58-65
    • /
    • 2000
  • This study is concerned about the verification and the implementation of a mechanical model for the force system in end milling. The model is based on the relationship between the cutting forces and the chip thickness. The components of the model are based on the average cutting forces which are experimentally obtained. And, both instantaneous and average force system characteristics are described as a function of cut geometry and a feed rate. This model employed two specific cutting forces, instantaneous and average specific cutting force, and the models which obtained using two cutting forces were compared and analyzed. In this study, cutter deflection with respect to the center of rotation is considered, which is a major part of the tool run-outs. The effect of run-out on the cutting forces is also discussed. The relationships among the run-out parameters, cutting parameters and the resulting force system characteristics are presented. In all cases, for the down milling with a right hand helix cutter is considered.

  • PDF

A Study of the Effectives for Surface Roughness by Cutting Angle and Cutting Fluid (절삭공구와 절삭유가 가공부위 표면거칠기에 미치는 영향에 관한 연구)

  • Choi, Sung-Yun;Kwon, Dae Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.57-62
    • /
    • 2018
  • In this report, Cutting of metals are basically existence of fundamentally important cutting method. It is necessary task for the advanced technical production which are need more precision and efficient to over an idealistic surface roughness. This study is resulted through cutting the row materials of SM45C, in the diluted solubility water type of cutting fluids twenty times and forty times as many as that water, by variable in the velocity, feed rate, depth of cut, comparing the examine under same cutting conditions.

A Study on the Geometric Error Prediction of Workpiece in Turning (선삭가공에서 공작물의 형상오차 예측에 관한 연구)

  • Lee, Mun-Jae;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.9-15
    • /
    • 2011
  • Any relative deformation between the cutting tool and the workpiece at machining point results directly in geometric and dimensional errors. The sources of relative deformations between the cutting tool and the workpiece at the contact point may be due to vibration, thermal deformation and cutting forces. In this paper, geometric error prediction of workpiece in turning has been investigated. To reach this goal, turning experiments are carried out according to selected cutting conditions. The variable cutting conditions are cutting speed, depth of cut and feed rate. The results will be useful as a guidance to select cutting conditions to improve the geometrical accuracy.

On cutting characteristics of glass fiber reinforced plastic (유리섬유강화수지의 절삭특성)

  • Choi, Soo-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.1
    • /
    • pp.78-83
    • /
    • 1988
  • The purpose of this study is to understand the cutting characteristics of glass-fiber rein- forced plastic (GFRP) by investigating the variation of cutting force and surface roughness, depending on the amount fo flank wear and cutting conditions. And a Taylor type tool life equation is derived using the regression analysis. The present study reveals that, 1. Taylor's eqquation can be applicable to GFRP nd the constants n (0.170-0.175) and C (53.7- 64.4) are smaller than those in cutting of steel. 2. Principal cutting force increases sharply with the increase of feed rate, but feed force and radial force are almost constant. This result is quite different from that of metal cutting. 3. Cutting forces ($F_P, \;F_Q, \;F_R$) increase with the increase of flank wear, and feed force especially increases sharply with the increase of flank wear. 4. Surface roughness changes very much along the circumference of the workpiece and the amount of flank wear has almost no effect on surface roughness.

  • PDF

Tool fracture detection in end milling using cutting force and acoustic emission propagated through cutting fluid (엔드밀 가공시 절삭력과 절삭유를 통해 전파된 음향방출을 이용한 공구파손 검출)

  • Maeng, M.J.;Cho, S.S.;Chung, J.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.163-170
    • /
    • 1997
  • End milling experiments are conducted to investigate characteristics of acoustic emission (AE) and cutting force singals due to tool fracture. The AE signals are obtained with a sensor attached to cutting fluid discharge nozzle. Tool states are identified with scanning electron microscopy and optical microscopy. It is demonstrated that the AE signals provide reliable informations about the cutting processes and tool states. Morever, tool fracture can be detected successfully using both the AE count rate and the standard deviation of principal cutting force.

  • PDF

A Study on the Characteristics on Ultra Precision Machining of IR Camera Mirror (적외선 카메라용 반사경의 초정밀 절삭특성에 관한 연구)

  • Kim Gun-Hee;Kim Hyo-Sik;Shin Hyun-Soo;Won Jong-Ho;Yang Sun-Choel
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.44-50
    • /
    • 2006
  • This paper describs about the technique of ultra-precision machining for an infrared(IR) camera aspheric mirror. A 200 mm diameter aspheric mirror was fabricated by SPDTM(Single Point Diamond Turning Machine). Aluminum alloy as mirror substrates is known to be easily machined, but not polishable due to its ductility. Aspheric large reflector without a polishing process, the surface roughness of 5 nm Ra, and the form error of ${\lambda}/2\;({\lambda}=632.8\;nm)$ for reference curved surface 200 mm has been required. The purpose of this research is to find the optimum machining conditions for cutting reflector using Al6061-T651 and apply the SPDTM technique to the manufacturing of ultra precision optical components of Al-alloy aspheric reflector. The cutting force and the surface roughness are measured according to each cutting conditions feed rate, depth of cut and cutting speed, using diamond turning machine to perform cutting processing. As a result, the surface roughness is good when feed rate is 1mm/min, depth of cut $4{\mu}m$ and cutting speed is 220 m/min. We could machined the primary mirror for IR camera in diamond machine with a surface roughness within $0.483{\mu}m$ Rt on aspheric.

Cuttings for Mass Propagation Affecting the Impact of Increasing Reproductive Efficiency of Schisandra chinensis (오미자 대량증식을 위한 삽목번식 효율증대에 영향을 미치는 요인)

  • Kim, Jong Yeob;Kim, Chang Su;You, Dong Hyun;Kim, Dong Won;Choi, Dong Chil;Kim, Jeong Man;Oh, Nam Ki;Park, Chun Geun;Ahn, Young Sup;Lee, Kang Soo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.3
    • /
    • pp.231-236
    • /
    • 2014
  • This experiment was carried out to establish the optimum cutting time, plant growth regulator, and bed-soil for rooting by greenwood cutting of Schisandra chinensis. Approximately 7 cm long-shoots of greenwood cuttings were transplanted by various cutting times, plant growth regulators, and bed-soils in the plastic-film house. The rooting rate of greenwood cutting was 12.5% in the April 5th, 73.5% in the May 8th, and 75.5% in the August 5th. The number and length of primary root in greenwood cutting were more in the early May than those in the early August. For mass propagation of Schisandra chinensis. using greenwood cutting, shoots were treated with plant growth regulators on May to increase rooting rate. Rooting rate was 100% with IAA $50mg/{\ell}$, 92.9% with NAA $100mg/{\ell}$, and NAA $1,000mg/{\ell}$, for 60 min. To select effective media for rooting, various medias for bed-soil were treated by single and mixture form for 100 days after cutting. Rooting rate was 91.8% in the single treatment of peat moss or decomposition of granite soil, and this result was better than those in other treatment. The treatment by 1 : 1 mixture of peat moss and horticulture bed soil was rooting with 94.0% best rooting rate.

Interrelation of the Diamond Disk and pad PCR in the CMP Process (CMP 공정에서 Diamond Disk와 Pad PCR 상관관계 연구)

  • Yun, Young-Eun;No, Yong-Han;Yoon, Bo-Earn;Bae, Sung-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.359-361
    • /
    • 2006
  • As circuits become increasingly complex and devices sizes shrinks, the demands placed on global planarization of higher level. Chemical Mechanical Polishing (CMP) is an indispensable manufacturing process used to achieve global planarity. In the CMP process, Diamond Disk (DD) plays an important role in the maintenance of removal rate. According to studies, the cause of removal rate decrease in the early or end stage of diamond disk lifetime comes from pad surface change. We also presented pad cutting rate (PCR) as a useful cutting ability index of DD and studied PCR trend about variable parameters that including size, hardness, shape of DD and RPM, pressure of conditioner It has been shown that PCR control ability of pressure and shape is superior to RPM and size. High pressure leads to a decrease of cell open ratio of pad surface because polyurethane of pad is destroyed by pressure. So low pressure high RPM condition is a proper removal rate sustain. By examining correlations between RPM and pressure of conditioner, it has been shown that PCR safe zoneto satisfy proper removal rate has the range 0.06mm/hr to 0.12mm/hr.

  • PDF

Determination of the Optimum Feed Rate by a Surface Roughness Model in a Face Milling Operation (표면노조 모델을 이용한 졍면밀링에서의 최적 이송속도 선정)

  • Baek, Dae-Kyun;Ko, Tae-Jo;Kim, Hee-Sool
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2508-2515
    • /
    • 1996
  • Determination of an optimal feed rate is valuable in the sense of the precision and efficient machining. In this regard, a new surface roughness model for the face milling operation that considered the radial and axal runouts of the inserts in the cutter body was developed. The validity of the model was proved through the cutting experiments, and the model is able to predict the real machined surface roughness exactly with the information of the insert runouts and the cutting conditions. From the estimated surface roughness value, the maximum feed rate that obtains a maximum naterial removal rate under the given surface roughness constraint can be selected by using a bisection method. Therefore, this mehod for optimizing the feed rate can be well applied to the using a bisection method. Therefore, this method for optimizing the feed rate can be well applied to the using selsction of the cutting condition during the NC data generation in CAM.