• Title/Summary/Keyword: Cutting point

검색결과 428건 처리시간 0.022초

임펠러의 효율적인 5축 NC 가공에 관한 연구 (A Study on Efficient Machining of Impeller with 5-axis NC Machine)

  • 조환영;이희관;공영식;양균의
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.399-404
    • /
    • 2002
  • An efficient method of machining impeller is presented. In the roughing process, the cutting area is divided into two regions to reduce cutting time and select cutting tools. The regions are determined by characteristic point on the geometry of impeller blade. Then, the tool of the maximum radius is selected in each area. Tool interference in cutting areas is avoided by checking the intersection between cooing tool axis and ruling line on blade surface.

  • PDF

Force Sensor를 이용한 구성인선의 In-Process 감시에 관한 기초 연구 (Basic Study on In-Process Monitoring of B.U.E. using Force Sensor)

  • 원종식;오민석;정윤교
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.200-205
    • /
    • 1996
  • Recently, in order to achieve high flexibility of manufacture, monitoring and control strategies cf a new type have been developed. Since the generation of built-up edge on the cutting tool damages the surface finish of the workpiece, the monitoring system of built-up edge is an important process monitoring. In this study, the analyzing methods of cutting force signal to detect the built-up edge during cutting process are described. The cutting force signals are analyzed using the mean, standard deviation and mean to standard deviation of this cutting signals. We can obtain the guide to detect the built-up edge during turning process.

  • PDF

비철금속의 선삭시 윗면 절삭각이 표면 거칠기에 미치는 영향에 관한 연구 (Study of Surface Roughness by Cutting Angle at Turning of Non-iron Metal)

  • 전재억;정진서;신규동;구양;하만경
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.236-241
    • /
    • 2000
  • In the present industry, there is not only the cutting of iron metal, but also the cutting of alloy aluminum, brass and plastic to wood(Paulownia). A variety of material is used and these industry is made need of the cutting material but lots of experiments processing is not enough at the moment. At this point, our team processed the basic experiment about influencing of cutting angle of bite concerned to manufacture in the turning of non-iron metal. Generally speaking, we recognized that there was occurrence of increase of rough surface with increasing of cutting angle in the non-iron metal. but in the cutting of wood we knew, there was special change with change of cutting angle.

  • PDF

선삭가공에 있어서 선삭저항의 신호처리와 그 응용에 관한 연구(II) (A Study on the Signal Process of Cutting Forces in Turning and its Application (2nd Report) -Automatic Monitor of Chip Rorms using Cutting Forces-)

  • 김도영;윤을재;남궁석
    • 한국정밀공학회지
    • /
    • 제7권2호
    • /
    • pp.85-94
    • /
    • 1990
  • In automatic metal cuttings, the chip control is one of the serious problems. So the automatic detection of chip forms is essential to the chip control in automatic metal cuttings. Cutting experiments were carried out under the variety of cutting conditions (cutting speed, feed, depth of cut and tool geometry) and with workpiece made of steel (S45C), and cutting forces were measured in-processing by using a piezoelectric type Tool Dynamometer. In this report, the frequency analysis of dynamic components, the upper frequency distributions, the ratio of RMS values, the numbers of null point and the probability density were calculated from the dynamic componeents of cutting forces filtered through various band pass filters. Experimental results showed that computer chip form monitoring system based on the cutting forces was designed and simulated and that 6 type of chip forms could be detected while in-process machining.

  • PDF

Force Sensor를 이용한 구성인선의 In-Process 감시에 관한 기초 연구 (Basic Study on in-Process Monitoring of B.U.E. Using Force Sensor)

  • 원종식;오민석;정윤교
    • 한국정밀공학회지
    • /
    • 제14권7호
    • /
    • pp.67-72
    • /
    • 1997
  • Recently, in order to achieve high flexibility of manufacture, monitoring and control strategies of a new type have been developed. Since the generation of built-up edge on the cutting tool damages the surface finish of the workpiece, the monitoring system of built-up edge is an important process monitoring. In this study, the analyzing methods of cutting force signal to detect the built-up edge during cutting process are described. The cutting force signals are analyzed using the mean, standard deviation and mean to standard deviation of this cutting signals. We can obtain the guide to detect the built-up edge during turning process.

  • PDF

광섬유 센서의 보링 바 삽입에 의한 진동측정 (The Vibration Measurement of Boring Process by Using the Optical Fiber Sensor at inside of Boring Bar)

  • 송두상;홍준희;곽양양
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.709-715
    • /
    • 2011
  • Chattering in cutting operations are usually a cumbersome part of the manufacturing process in mechanical. Particular, machining performance such as that of the boring process is limited by cutting condition at the movable components. Among various sources of chatter vibration, detrimental point in cutting condition is found a mechanical condition on overhang. It limits cutting speed, depth, surface roughness and tool wear failure as result because the all properties are varying with the metal removal process. In this case, we have to observe the resonance frequencies of a boring bar for continuous cutting. In the established research, boring bar vibration of cutting system has been measured with the aid of accelerometer. However, the inherent parameters of internal turning operations are severely limit for the real time monitoring on accelerometers. At this point, this paper is proposed other method for real time monitoring during continuous cutting with optical fiber at the inside of boring bar. This method has been used a plastic fiber in the special jig on boring bar by based on experimental modal analysis. In this study, improvement of monitoring system on continuous internal cutting was attempted using optical fiber sensor of inside type because usually chattering is investigated experimentally measuring the variation in chip thickness. It is demonstrated that the optical fiber sensor is possibility to measure of chattering with real time in boring process.

엔드밀링 공정의 형상창성기구에 의하여 절삭면적이 측벽 진직도 특성에 미치는 영향 (Effects of Cutting Area on Straightness Characteristics in Side Walls Caused by Form Generation Mechanism in End-Milling Process)

  • 김강
    • 대한기계학회논문집A
    • /
    • 제37권10호
    • /
    • pp.1269-1278
    • /
    • 2013
  • 엔드밀링 공정은 형상창성기구의 특성 상, 절삭면적의 주기적인 변화를 피할 수 없다. 그러므로, 본 연구에서는, 가공 중 절삭날과 공작물 사이의 간섭영역에 해당하는 절삭면적의 모델을 확립하여, 가공면 형상 특성과 절삭면적의 관계를 규명하고자 한다. 대상 가공면은 측벽을 선정하였으며, 형상 특성은 축 방향 진직도를 선택하였다. 절삭면적 및 축방향 진직도에 영향을 미치는 특이점 추정 모델의 타당성은 반경 방향 및 축 방향 절삭깊이를 변화시키며 엔드밀링 가공을 수행하여 검증하였다. 연구 결과, 배분력이 음의 값을 갖지 않는 안정적인 엔드밀링 가공의 경우, 상향절삭은 절삭면적이 증가했다. 일정해지는 영역에서, 하향절삭은 절삭면적이 일정했다 감소하는 영역에서 가공면을 창성하며, 영역이 변화될 때 가공면에 특이점이 발생하는 것이 확인되었다.

컴퓨터수치제어(CNC) 플라즈마 아아크 절단장치 개발에 관한 연구 (A study on development of plasma-arc cutting system with computer-numerical control)

  • 노태정;나석주;나규환
    • Journal of Welding and Joining
    • /
    • 제8권3호
    • /
    • pp.60-69
    • /
    • 1990
  • Plasma arc cutting is a fusion cutting process in which a gas-constricted arc is employed to produce a high-temperature, high-velocity plasma jet on the workpiece. This process provides some advantages such as increased cutting velocity, excellent working accuracy and the ability to cut special materials (widely used stainless steels and Al-alloys, for example), when compared with iconventional oxyfuel gas cutting. From the view point of price and reliability of the power source, plasma arc cutting has also some distinct advantages over laser beam cutting. High-speed machines with NC or CNC systems are needed for the plasma arc or laser beam cutting process, while for oxyfuel gas cutting, low-speed machines with copying templates or optical-shape tracking sensors can be applied. The low price and high flexibility of the microprocessor arc contributing more and more the application of CNC system in the plasma arc cutting process, as in other manufacturing fields. From these points of view, a microprocessor-based plasma arc cutting system was developed by using a reference-pulse system, and its performance was tested. The interpolating routines were programmed in the assembly language for saving the memory volume and improving the compouting speed, which has an intimate relationship with the available cutting velocity.

  • PDF

톱기계에서 절삭력 예측을 위한 역학모델 (A Mechanistic Model for the Prediction of Cutting Forces in Band Sawing)

  • 정훈;고태조;김희술
    • 한국정밀공학회지
    • /
    • 제15권5호
    • /
    • pp.145-152
    • /
    • 1998
  • In this research, in order to predict the cutting force using a mechanistic model, specific cutting force was firstly obtained through the cutting experiments. Band sawing process is similar to a milling, that is multi-point cutting. Therefore it is not easy matter to evaluate specific cutting force. Thus, the thickness of workpiec was made smaller than one pitch of the saw in terms of fly cutting in the face milling process. Then the cutting force was predicted by analyzing the geometric shape of a saw tooth The tooth shape used in the research was raker set style that was generally used in band sawing. And a set of teeth is comprised of three teeth, those are ranked as left, straight and right. The mechanistic model was developed in this study considered those shapes of each tooth. From the validation experiments, the predicted cutting forces coincided well with the measured ones. Therefore the predicted cutting forces can be used for the adaptive control of saw engaging feed rate in the band sawing.

  • PDF

볼엔드밀 가공의 칩두께 모델 해석 (Analysis of Chip Thickness Model in Ball-end Milling)

  • 심기중;문상돈
    • 한국공작기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.73-80
    • /
    • 2006
  • This paper describes a analysis on the chip thickness model required for cutting force simulation in ball-end milling. In milling, cutting forces are obtained by multiplying chip area to specific cutting forces in each cutting instance. Specific cutting forces are one of the important factors for cutting force predication and have unique value according to workpiece materials. Chip area in two dimensional cutting is simply calculated using depth of cut and feed, but not simply obtained in three dimensional cutting such as milling due to complex cutting mechanics. In ball-end milling, machining is almost performed in the ball part of the cutter and tool radius is varied along contact point of the cutter and workpiece. In result, the cutting speed and the effective helix angle are changed according to length from the tool tip. In this study, for chip thickness model analysis, tool and chip geometry are analyzed and then the definition of chip thickness and estimation method are described. The resulted of analysis are verified by compared with geometrical simulation and other research. The proposed chip thickness model is more precise.