• 제목/요약/키워드: Cutting guides

검색결과 12건 처리시간 0.031초

STAVAX 강의 마이크로 밀링 중 가공 방향 및 절삭유체 분사형태에 따른 표면 거칠기 경향에 관한 연구 (A study on surface roughness depending on cutting direction and cutting fluid type during micro-milling on STAVAX steel)

  • 이동원;이현화;김진수;김종수
    • Design & Manufacturing
    • /
    • 제17권2호
    • /
    • pp.22-26
    • /
    • 2023
  • As Light-Emitting Diodes(LEDs) continue to advance in performance, their application in automotive lamps is increasing. Automotive LEDs utilize light guides not only for aesthetics but also to control light quantity and direction. Light guides employ patterns of a few hundred micrometers(㎛) to regulate the light, and the surface roughness(Ra) of these patterns can reach tens of nanometers(nm). Given that these light guides are produced through injection molding, mold processing technology with high surface quality micro-patterns is required. This study serves as a preliminary investigation into the development of high surface quality micro-pattern processing technology. It examines the surface roughness of the workpiece based on the cutting direction of the pattern and the cutting fluid type when cutting micro-patterns on STAVAX steel using cubic Boron Nitride(cBN) tools. The experiments involved machining a step-shaped micro-pattern with a height of 60 ㎛ and a pitch of 400 ㎛ in a 22×22 mm area under identical cutting conditions, with only the cutting direction and cutting fluid type being varied. The machining results of four cases were compared, encompassing two cases of cutting direction(parallel to the pattern, orthogonal to the pattern) and two cases of cutting fluid type (flood, mist). Consequently, the Ra value was found to be the highest(Ra 128.33 nm) when machining with the flood type in parallel to the pattern, while it was the lowest(Ra 95.22 nm) when machining with the mist type orthogonal to the pattern. These findings confirm that there is a difference of up to 25.8 % in the Ra value depending on the cutting direction and cutting fluid type.

이하선수술시 안면신경의 위치에 따른 신경 보존 술식의 개선방법 (Rolling Method to Preserve Facial Nerve in Parotidectomy)

  • 유영삼
    • 대한두경부종양학회지
    • /
    • 제26권1호
    • /
    • pp.19-23
    • /
    • 2010
  • Objectives : In parotidectomy, facial nerve dissection technique had been evolved for its safety. Surgical landmarks are important and good guides to facial nerve detection. Conventional exposure and release of the nerve requires hemostat for elevation of parotid tissue from nerve and #11 blade for cutting the parotid away from the nerve. Material and Methods : The rolling the parotid tissue over the nerve after dissecting with Metzembaum scissors instead of knife, lessen pulling trauma and nerve cutting by knife. Eleven superficial parotidectomies since June 2009 were done with rolling technique and preliminary report is presented. Results : Total 11 parotidectomies were done using proposed technique with tolerable complications(temporary facial dysfunction in 4 cases). Conclusion : Rolling method using metzembaum scissors could be applied to parotid operation.

단결정 다이아몬드 공구에 의한 비철금속과 폴리머 소재의 마이크로 트렌치 가공특성 비교 (Comparison of Micro Trench Machining Characteristics with Nonferrous Metal and Polymer using Single Diamond Cutting Tool)

  • 최환진;전은채;최두선;제태진;강명창
    • 한국분말재료학회지
    • /
    • 제20권5호
    • /
    • pp.355-358
    • /
    • 2013
  • Micro trench structures are applied in gratings, security films, wave guides, and micro fluidics. These micro trench structures have commonly been fabricated by micro electro mechanical system (MEMS) process. However, if the micro trench structures are machined using a diamond tool on large area plate, the resulting process is the most effective manufacturing method for products with high quality surfaces and outstanding optical characteristics. A nonferrous metal has been used as a workpiece; recently, and hybrid materials, including polymer materials, have been applied to mold for display fields. Thus, the machining characteristics of polymer materials should be analyzed. In this study, machining characteristics were compared between nonferrous metals and polymer materials using single crystal diamond (SCD) tools; the use of such materials is increasing in machining applications. The experiment was conducted using a square type diamond tool and a shaper machine tool with cutting depths of 2, 4, 6 and 10 ${\mu}m$ and a cutting speed of 200 mm/s. The machined surfaces, chip, and cutting force were compared through the experiment.

방전 가공기용 복합재료 외팔보의 제작 및 성능평가 (Manufacture and performance test of the composite cantilever arm for electrical discharge wire cutting machine)

  • 최진호
    • Composites Research
    • /
    • 제13권6호
    • /
    • pp.39-46
    • /
    • 2000
  • 방전가공은 공구와 공작물 사이의 얇은 간극에 전류를 방전시켜 금속을 가공하는 방법이다. 방전 와이어 가공은 전도성 와이어를 사용하는 방전가공의 특수한 예로서, 펀치나 금형제조에 널리 이용되고 있다. 와이어 방전가공에서 와이어는 와이어 가이드 및 외팔보로서 지지되어 있다. 최근 생산성의 증가추세와 더불어 와이어의 이송속도가 증가함에 따라 외팔보의 진동 등으로 인한 기계 정밀도의 저하가 우려된다. 본 논문에서는 정, 동특성이 우수한 방전가공기용 복합재료 외팔보를 설계, 제작하였다. 끼워맞춤길이와 보강 적층수의 변화에 따른 정, 동특성의 변화를 살펴보기 위하여 시편을 제작하여 하중실험을 수행하였다. 또한 유한요소 해석을 수행하여 하중실험의 결과와 상호 비교하였다. 시편실험의 결과로부터 방전가공기용 복합재료 외팔보를 설계, 제작하여 기존의 금속 외팔보와 그 성능을 상호 비교하였다.

  • PDF

수평형 머시닝센터의 내구성 예측 시스템 개발 (Development of a Durability Estimation System for Horizontal Machining Centers)

  • 김기상;김석일
    • 한국공작기계학회논문집
    • /
    • 제10권4호
    • /
    • pp.22-32
    • /
    • 2001
  • One of the important considerations in designing a machine tool is the durability. In this study, a durability estimation system for horizontal machining centers is developed to evaluate the effects of structural specification and driving condi-tions on the durability. All loads such as weights, inertial forces, cutting force and so on, are automatically transferred from the upper elements to the lower elements by the force flows which can be derived from the structural code of horizontal machining centers. And the external loads applied to the motion elements such as bearings, LM guides, ball screws and ao on, are determined by the equilibrium conditions of force and moment. Especially, the durability of horizontal machining centers is estimated based on the lifes of motion elements operating under the desired driving conditions.

  • PDF

수평형 머시닝센터의 내구성 예측 시스템 개발 (Development of a Durability Estimation System for Horizontal Machining Centers)

  • 김기상
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.3-10
    • /
    • 1999
  • One of the important considerations in designing a machine tool is the durability. In this study, a durability estimation systems for horizontal machining centers is developed to evaluate the effects of structural specification and driving conditions on the durability. All loads such as weights, inertia forces, cutting force and so on, are automatically transferred from the upper elements to the lower elements by the force flows which can be derived from the structural code of horizontal machining centers. And the external loads applied to the motion elements such as bearings, LM guides, ball screws and so on, are determined by the equilibrium conditions of force and moment. Especially, the durability of horizontal machining center is estimated based on the lifes of motion elements operating under the desired driving conditions.

  • PDF

구조용 세라믹스의 자동차와 제조업에의 응용 (Structural Ceramics for Automobiles and Industrial Application in Japan)

  • 오카다 아키라
    • 세라미스트
    • /
    • 제9권6호
    • /
    • pp.7-11
    • /
    • 2006
  • The status of structural ceramics in Japan is presented. Use of ceramics for structural components had been limited due to their brittleness, and the successful application was wear resistant parts such as thread guides and ceramic cutting tools up to around 1980. Since then, considerable work has been done for applying ceramics to mechanical parts, and automotive components made of silicon nitride were developed and commercialized in 1980s. Unfortunately, the application of silicon nitride to automotive engines is not so popular in these days. Instead, a variety of structural ceramics such as alumina, silicon carbide and zirconia have recently extended the market, and the expanded application includes vacuum process parts for manufacturing semiconductor and liquid crystal devices, refractory tubes for casting aluminum alloy, and dies for optical lens forming. In addition, cordierite honeycombs and diesel particulate filters are widely used in automobiles. In the present review, the recent application of structural ceramics to automobiles and industries in Japan is summarized.

  • PDF

기어 그라인딩 장비 가공조건 최적화에 대한 실험적 연구 (An Experimental Research for the Optimization of the Gear Grinding Machine's Operating Condition)

  • 이현구;김무석;황선양;권오준;강구태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 춘계학술대회 논문집
    • /
    • pp.65-66
    • /
    • 2010
  • To improve the gear noise quality, gear tooth grinding machine are widely used in automotive industry. While using the gear profile grinding machine to improve the gear tooth quality of the transmission, several defects such as chattering, tooth waves that cause the gear noise occasionally happened. But it is very difficult to solve that problem, because there is no one who knows the setting up the optimal grinding condition appropriately. The abnormal manufacturing conditions which make the gear noise make the engineer to spend a lot of time, effort, and money. Due to demands for solving the serious abnormal gear noise happened in the new FF 6th stage automatic transmission in the mass product stage, the vibration checking process in the worm wheel axis, work rotation and fixed axis of the grinding machine were adapted to find the root causes. As a result, gear profile wave are affected by the work rotation axis's unbalance which is caused by worm wheel feeding speed. And a primary and the secondary grinding feeding speed, cutting oil, work fixed forces are also proved as the important factors. After setting up the grinding condition reported in this paper, it was adapted successfully to the grinding machine to manufacture the new FF 6th speed automatic transmissions' output gear. The gear noise was dramatically disappeared and the process and results will offer good guides to the engineers who manufacture the gear with the grinding machine.

  • PDF

기어 그라인딩 장비 가공조건 최적화에 대한 실험적 연구 (An Experimental Research for the Optimization of the Gear Grinding Machine's Operating Condition)

  • 이현구;김무석;강구태
    • 한국소음진동공학회논문집
    • /
    • 제20권7호
    • /
    • pp.665-671
    • /
    • 2010
  • To improve the gear noise quality, gear tooth grinding machine are widely used in automotive industry. While using the gear profile grinding machine to improve the gear tooth quality of the transmission, several defects such as chattering, tooth waves that cause the gear noise occasionally happened. But it is very difficult to solve that problem, because there is no one who knows the setting up the optimal grinding condition appropriately. The abnormal manufacturing conditions which make the gear noise make the engineer to spend a lot of time, effort, and money. Due to demands for solving the serious abnormal gear noise happened in the automatic transmission in the mass product stage, the vibration checking process in the worm wheel axis, work rotation and fixed axis of the grinding machine were adapted to find the root causes. As a result, gear profile wave are affected by the work rotation axis's unbalance which is caused by worm wheel feeding speed. And a primary and the secondary grinding feeding speed, cutting oil, work fixed forces are also proved as the important factors. After setting up the grinding condition reported in this paper, it was adapted successfully to the grinding machine to manufacture the new automatic transmissions' gear. The gear noise was dramatically disappeared and the process and the results will offer good guides to the engineers who manufacture the gear with the grinding machine.

6시그마 DMADOV기반 아리즈와 브레인스토밍을 이용한 취부용 피스제거 시스템의 공학문제 해결에 관한연구 (A Study on Solving Engineering Problems of a Piece-removing System using 6-Sigma DMADOV Technique with ARIZ & Brainstorming)

  • 이성조;정원지;이춘만
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.50-56
    • /
    • 2010
  • This paper presents a new design algorithm for piece-removing dynamical system, based on 6-Sigma DMADOV technique using ARIZ and Brainstorming. Our design target is the piece-removing system installed on a mobile platform of bead-grinding equipment. The 6-Sigma DMADOV technique guides us design process according to 6 steps, i.e., Define - Measure - Analyze - Design - Optimize - Verify. A Design strategy to reduce the weight of piece-removing dynamical system will be explored by using ARIZ, i.e.,(the abbreviation of Algorithm for Inventive Problem Solving in Russian). The ARIZ will result in a final solution that the height and angle control parts for a cutting tool should be replaced by a kinematical approach, rather than complicated mechatronic approach(using motors). The Optimize step is composed of two sub-steps: (i) Generating process for obtaining several ideas of piece-removing system by using Brainstorming technique, satisfying the final solution derived from the Design step using ARIZ, and (ii) Optimizing process for selecting the most optimal idea of piece-removing system by using Pugh's matrix from the viewpoints of weight, cost and accuracy. The laststep of Verify has shown that the final design obtained by the 6-Sigma DMADOV technique with ARIZ & Brainstormingcan improve an initial design with design requirements satisfied. In this paper, we have shown that ARIZ and Brainstorming can be cooperatively merged into 6-Sigma DMADOV to give us both a formulatedproblem-solving approach and diverse candidate solutions(or ideas) without trial-and-error efforts.