• 제목/요약/키워드: Cutting force model

검색결과 271건 처리시간 0.027초

퍼지이론을 이용한 선삭의 절삭력제어 (Cutting Force Control of Turning Process Using Fuzzy Theory)

  • 노상현;정선환;김교형
    • 대한기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.113-120
    • /
    • 1994
  • The dynamic characteristics of turning processes are complex, non-linear and time-varying. Consequently, the conventional techniques based on crisp mathematical model may not guarantee cutting force regulation. This paper presents a fuzzy controller which can regulate cutting force in turning process under varying cutting conditions. The fuzzy control rules are extablished from operator experience and expert knowledge about the process dynamics. Regulation which increases productivity and tool life is achieved by adjusting feedrate according to the variation of cutting conditions. The performance of the proposed controller is evaluated by cutting experiments in the converted conventional lathe. The results of experiments show that the proposed fuzzy controller has a good cutting force regulation capability in spite of the variation of cutting conditions.

볼 엔드 밀에 의한 곡면가공의 절삭력 예측에 관한 연구 (A study on the prediction of cutting force in ball-end milling process)

  • 박희덕;양민양
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.433-442
    • /
    • 1989
  • 본 연구에서는 볼 엔드 밀 절삭실험을 통하지 않고 일반적인 선삭가공 등에서 쉽게 구할 수 있는 2차원 절삭 데이터를 이용하여 볼 엔드 밀의 기하학적 형상 및 절삭조건이 주어졌을 때 모든 볼 엔드 밀 가공에서의 절삭기구를 해석하고 절삭력 모델을 구하고자 한다. 이를 위하여 볼 엔드 밀의 기하학적 특성 및 절삭 조건 등을 분석하고, 미소절삭날터를 이용한 3차원 절삭해석방법을 적용하여 미소 절삭력을 구하고 이들의 합력으로서 절삭력을 계산한다.

절삭가공의 적응제어에 관한 연구 (A Study on Adaptive Control of Cutting Process)

  • 김남경;송지복
    • 한국정밀공학회지
    • /
    • 제9권2호
    • /
    • pp.138-144
    • /
    • 1992
  • Conventionally, model equation for cutting process has been used at adaptive control. But in this paper, the cutting force is discerned by piezo electric dynamometer and is controlled adaptively using fuzzy inferance so that the constant load feeding is possible. Main conclusions are as follows : (1) with proper design of fuzzy label, more active cutting force control is possible. (2) adaptive control is possible with only qualitative knowledge instead of model equation of cutting process.

  • PDF

엔드밀 가공에서의 공구 변형에 대한 유한요소해석 (A study on Finite Element Analysis of Tool Deformation in End Milling)

  • 김국원;정성찬
    • 한국산학기술학회논문지
    • /
    • 제6권1호
    • /
    • pp.83-86
    • /
    • 2005
  • 본 연구에서는 절삭 가공시 공구가 받는 절삭력과 칩-공구 사이에서 발생하는 절삭온도에 의한 공구의 변형을 예측하였다. 3D CAD를 이용하여 공구를 모델링 하였으며 절삭력과 절삭온도를 하중조건으로 부여하여 유한요소해석을 수행하였다. 하중조건으로 사용한 절삭력과 절삭온도는 절삭이론을 이용한 절삭력 모델을 사용하여 예측하였으며 실험을 통해 모델의 타당성을 검증하였다. 그러므로 본 연구는 절삭조건과 재료 물성치 그리고 공구 형상만을 알면 이에 따른 절삭력 성분 및 절삭온도 둥을 얻을 수 있고, 이를 이용하여 절삭 가공시 발생하는 공구의 변형을 예측할 수 있다.

  • PDF

독립성분 해석을 이용한 절삭력 예측 (Prediction of Cutting Force Using Independent Component Analysis)

  • 이영문;장승일;이동식;전정운
    • 한국기계가공학회지
    • /
    • 제2권2호
    • /
    • pp.22-30
    • /
    • 2003
  • Cutting force signals are very useful to evaluate the cutting state, but many disturbing factors are occurring during cutting. For the reliability of the analysis, selecting pure cutting force signals from the original ones is needed. In the current study, using the ICA(Independent Component Analysis) effective cutting force components are seperated from the original signals. And using this, as input data of MLP(Multi-Layer Perception) cutting forces are predicted Experimental results are then compared with the predicted ones to verify the validation of the proposed model.

  • PDF

절삭공구의 열변형 오차 및 절삭력 변형 오차에 관한 연구 (Study of the thermal deflection error and the deflection error induced by the cutting force)

  • 오명석;윤인준;백대균
    • 한국산업융합학회 논문집
    • /
    • 제5권4호
    • /
    • pp.373-378
    • /
    • 2002
  • This paper presents a method to predict tool deflection induced by the thermal distribution and the cutting force using FEM in milling operation. The thermal distribution of cutting tool was predicted using FEM after measuring the temperature of the end of tool and of the tool holder. The thermal deflection of cutting tool was predicted using FEM as well. The tool deflection induced by the cutting force was analyzed with the solid model of cutting tool. An end mill tool caused most of tool deflection comparing to tool holder. Most of thermal deflection came from Z-direction and most of tool deflection induced by the cutting force came from X and Y direction. Precision cutting will be accomplished when tool locations are generated considering the thermal deflection of cutting tool and the tool deflection induced by the cutting force in CAD/CAM.

  • PDF

나노부품 초정밀가공기용 마이크로스테이지의 절삭력 예측모델 시뮬레이션 (The Simulation of Cutting force Estimate Model at Micro-Stage for Ultra Precision Cutting Machine of Nano Part)

  • 김재열;심재기;곽이구;안재신;한재호;노기웅
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.173-178
    • /
    • 2003
  • Recently, according to the development of mechatronics industry that was composed of NT, ST, IT, RT and etc, the 1 necessity of nano-parts was increased. Because of the necessity, this research was started for improving work precision of the parts as fixing UPCU( Ultra Precision Cutting Unit)on lathe. So, in this research we executed the modeling of UPCU (Ultra Precision Cutting Unit) by the application of PZT, the relationship between the displacement of tool in UPCU and the cutting force of it has been in take a triangular position in the case of plane cutting. The modeling of system that is containing the fine displacement was performed. Also, we found like to find the optimal cutting condition through the simulation of relationship between the displacement and the cutting force.

  • PDF

절삭영역 해석을 통한 경사면 가공에서의 볼엔드밀 절삭력 예측 (Cutting Force Prediction of Slanted Surface Ball-End Milling Using Cutter Contact Area)

  • 김규만;조필주;황인길;주종남
    • 한국CDE학회논문집
    • /
    • 제3권3호
    • /
    • pp.161-167
    • /
    • 1998
  • Cutting forces in ball-end milling of slanted surfaces are calculated. The cutting area is determined from the Z-map of the surface geometry and current cutter location. The obtained cutting area is projected onto the cutter plane normal to the Z-axis and compared with cutting edge element location. Cutting force is calculated by integration of elemental cutting forces of engaged cutting edge elements. Experiments with various slanted angles were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and surfaces with pockets and holes.

  • PDF

밀링가공에서의 절삭력에 대한 해석적 연구 (An Analytic Approach for Cutting Forces in Milling Process)

  • 김국원;김남웅
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.270-273
    • /
    • 2002
  • This paper presents an effective cutting force model that enable us to predict the instantaneous cutting force in milling process from a knowledge of the work material properties and cutting conditions. The development of the model is based on the orthogonal machining theory with the effective rake angle which is defined in the plane containing the cutting velocity and chip flow vectors. Face milling tests are performed at different feeds and, a fairly good agreement is shown between the predicted cutting forces and test results.

  • PDF

Al 6061 MQL 선삭가공에서 절삭력과 표면거칠기 예측에 관한 실험적 연구 (Experimental Study of Cutting force and Surface Roughness Prediction in MQL Tooling of Al 6061)

  • 황영국;정원지;이춘만
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.159-167
    • /
    • 2008
  • Cooling lubricants are used in machining operations in order to reduce friction at the tool-chip and tool-workpiece interfaces, cool both chip and tool, and remove chip. Furthermore, they influence a strong effect on the shearing mechanisms and, consequently, on the machined surface quality and tool wear. However, several researchers state that the costs related to cutting fluids is frequently higher than those related to cutting tools. Moreover, the cooling lubricants cause an increase in both worker's health and social problems related to their use and correct disposal. Therefore, many researchers have focused on the environmentally conscious machining technologies. One of the technologies is known as MQL(Minimum Quantity Lubrication) machining. In this paper, an experimental model to obtain the optimal cutting conditions in MQL turning was suggested, and the effects of cutting conditions on surface roughness and cutting force were analyzed. For these purposes, FFD (Fractional Factorial Design) and RSM (Response Surface Methods) were used for the experiment. Cutting force and surface roughness with different cutting conditions were measured through the external cylindrical turning of Al 6061 based on the experiment plan. The measured data were analyzed by regression analysis and verification experiments with random conditions were conducted to confirm the suggested experimental model.