• 제목/요약/키워드: Cutting force model

검색결과 272건 처리시간 0.028초

공구파손검출을 위한 시스템인식에 관한 연구 (A Study on the System Identification for Detection of Tool Breakage)

  • 사승윤
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.144-149
    • /
    • 2000
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There have been many studies to monitor and predict the system, but they have mainly focused upon measuring cutting force, and current of motor spindle, and upon using acoustic sensor, etc. In this study, time series sequence of cutting force was acquired by taking advantage of piezoelectric type tool dynamometer. Radial cutting force was obtained from it and was available for useful observation data. The parameter was estimated using PAA(parameter adaptation algorithm) from observation data. ARMA(auto regressive moving average) model was selected for system model and second order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter.

  • PDF

선삭가공에서 공구파손 검출 시스템 인식에 관한 연구 (A Study on the System Identification of Tool Breakage Detection in Turning)

  • 사승윤
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.40-45
    • /
    • 1999
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There have been many studies to monitor and predict the system, but they have mainly focused upon measuring cutting force, and current of motor spindle, and upon using acoustic sensor, etc.In this study, time series sequence of cutting force was acquired by taking advantage of piezoelectric type tool dynamometer. Radial cutting force was obtained from it and was available for useful observation data. The parameter was estimated using PAA (parameter adaptation algorithm) from observation data. ARMA(auto regressive moving average) model was selected for system model and second order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter.

  • PDF

엔드밀링의 전단특성 및 마찰특성 해석 (The Shear and Friction characteristics Analysis of End-milling)

  • 이영문;송태성;심보경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.724-729
    • /
    • 2000
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting model. According to this analysis, when cutting SM45C steel, 72% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

  • PDF

톱절삭에서의 절삭력 예측 (Estimation of cutting forces in band sawing)

  • 정훈;백대균;고태조;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.31-35
    • /
    • 1996
  • The cross section of the circular rod type workpiece to be cut in the band saw machine is variable at every moment in the sawing process. When the cutting feed rate is fixed to the constant speed, the cutting edges of the band saw teeth are also variabl eat any moment, so this causes the wear of the land saw teeth and the deterioration of the quality in the surface roughness. In this study, to work out this kind of problem basically, the mean cutting force of a tooth in the band saw was estimated by using the workpiece which was smaller than the interval of each tooth, i.e. band saw pitch, in the thickness. Then the static cutting forces were predicted by appling the mean cutting forces referred above to the mechanistic cutting force model which were analyzed through the geometric profile of a band saw tooth.

  • PDF

엔드밀링의 전단특성 및 마찰특성 해석 (The Shear and Friction Characteristics Analysis of End-Milling)

  • 이영문;송태성;심보경
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1520-1527
    • /
    • 2001
  • In end milling process the undeformed chip thickness and the cutting force components vary periodically with phase change of the tool. In this study, up end milling process is transformed to the equivalent oblique cutting. The varying undeformed chip thickness and the cutting force components in end milling process are replaced with the equivalent average ones. Then it can be possible to analyze the chip-tool friction and shear process in the shear plane of the end milling process by the equivalent oblique cutting model. According to this analysis, when cutting SM45C steel, 72% of the total energy is consumed in the shear process and the balance is consumed in the friction process.

2차원 저속절삭에 대한 유한요소 해석 (Finite Element Analysis of an Orthogonal Cutting Process with Low Speed)

  • 김국원;안태길;이우영
    • 한국기계가공학회지
    • /
    • 제5권2호
    • /
    • pp.10-15
    • /
    • 2006
  • An introduction to orthogonal cutting model by FEM is given, followed by a review of similar work. The cutting process is treated as quasi-static and strain rate insensitive, so the model is applicable only to low speed cutting operation. Chip separation is accomplished along a predefined cutting path by means of an element death procedure. Contact elements with friction capability are used to model the interaction between the tool and the workpiece. FEM results are compared with cutting experiments with low speed for brass, and good correlations are found.

  • PDF

일정절삭력 제어를 위한 이송속도 적응제어 시스템 (Afeedrate Override Control System for the Cutting Force Regulation)

  • 김창성;박영진;정성종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.321-327
    • /
    • 1993
  • In order to maintain the cutting force at a desired level during peripheral end milling processes in spite of variation of the depth of cut and other machining conditions, a feedrate override. Apaptive Control Constraint (ACC) system are developed. Feedrate override was accomplished by a developed MMC board and PMC interface techniques. Nonlinear model of the cutting process was linearized as an adaptive model with time varying paramrters. Integral type estimators were introduced for on-line identification of cutting and control parameters in peripheral and milling processes. Zero Order Jold (ZOH) type degital control methodology which uses pole-placement concepts was applied for the ACC system. Performance of the developed ACC system was confirmed on the vertical machining center equipped with FANUC OMC for a large amount of experiment

  • PDF

엔드 밀링의 가공 표면 정밀도 예측과 해석 (Prediction and analysis of the machined surface accuracy in end milling)

  • 고정훈;윤원수;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.1018-1022
    • /
    • 2000
  • Enhancement of the accuracy of products and productivity are essential to survive in a global industrial competition. This trend requires tighter dimensional tolerance specifications. To actively cope with the rapid change of the workpiece material and cutter geometry, a general method that can predict and analyze the machined surface is needed. Surface generation model for the prediction of the topography of machined surfaces is developed based on cutting force model considering cutter deflection and runout. This paper presents the method that constructs the three-dimensional machined surface error following the movement of a cutter, irrespective of the variations of cutting conditions. In addition, the effects of the cutting forces and the kink shape on the machined surface are extensively investigated.

  • PDF

선삭에서 공구의 윗면경사각이 비절삭저항에 미치는 영향 (The Effect of Back Rake Angle of Tool for Specific Cutting Resistance in Turning)

  • 김정현
    • 한국생산제조학회지
    • /
    • 제7권6호
    • /
    • pp.80-89
    • /
    • 1998
  • Back rake angle of tool is one of the fundamental effects to the cutting ability. In this paper, for several back rake angle of lathe tool (-5$^{\circ}$ , 0$^{\circ}$ , 5$^{\circ}$ , 10$^{\circ}$ , 15$^{\circ}$ ), we experimentally examine cutting forces via orthogonal cutting. Using measured cutting forces, a formula for specific cutting resistance is derived according to the variation of tool angle. Also, the measured cutting forces are analyzed in both time and frequency domain. Cutting parameters are obtained by measuring the thickness of chip, and the effect of the back rake angle of tool is manifested. This study maintains the predicted cutting model with improved accuracy.

  • PDF

난삭재 고속가공에서의 엔드밀링 공정의 절삭력 해석 (Cutting Force Analysis in End Milling Process for High-Speed Machining of Difficult-to-Cut Materials)

  • 전태수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.359-364
    • /
    • 1999
  • Due to rapid growth of die and mould industries, it is urgently required to maximize the productivity and the efficiency of machining. In recent years, owing to the development of new kinds of material, die and mould materials are much harder and it is more difficult to cut. In this study, the workpiece SKD11(HRC45) is cut with TiAlN coated tungsten-carbide cutting tools. To find the general characteristics of difficult-to-cut materials, orthogonal turning test is performed. Orthogonal cutting theory can be expanded to oblique cutting model. The oblique cutting process in the small cutting edge element has been analyzed as orthogonal cutting process in the plane containing the cutting velocity vector and chip-flow vector. Hence, with the orthogonal cutting data obtained from orthogonal turning test, the cutting forces can be analyzed through oblique cutting model. The simulation results have shown a fairy good agreement with the test results.

  • PDF