• 제목/요약/키워드: Cutting force model

검색결과 271건 처리시간 0.021초

엔드밀링의 효과적인 절삭력 모델과 NC 검증시스템으로의 응용 (Fast Force Algorithm of End Milling Processes and Its Application to the NC Verification System)

  • 김찬봉;양민양
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1555-1562
    • /
    • 1995
  • This study represents the non-dimensional cutting force model. With the non-dimensional cutting force model it is possible to estimate efficiently the maximum cutting force during one revolution of cutter. Using the non-dimensional cutting force model, the feed rate and spindle speed are adjusted so as to satisfy the maximum cutting force and maximum machining error. To verify the accuracy and efficiency of the non-dimensional cutting force model, a series of experiments were conducted, and experimental results proved and verified the non-dimensional cutting force model. The NC toolpath verification system developed in this paper uses the non-dimensional cutting force model, so that it is effective for calculating the cutting force and adjusting the cutting conditions.

CNC 가공에서 절삭력 예측과 조절을 위한 절삭 시뮬레이션 시스템 개발 (Development of Cutting Simulation System for Prediction and Regulation of Cutting Force in CNC Machining)

  • 고정훈;이한울;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.3-6
    • /
    • 2002
  • This paper presents the cutting simulation system for prediction and regulation of cutting force in CNC machining. The cutting simulation system includes geometric model, cutting force model, and off-line fred rate scheduling model. ME Z-map(Moving Edge node Z-map) is constructed for cutting configuration calculation. The cutting force models using cutting-condition-independent coefficients are developed for flat-end milling and ball-end milling. The off-line feed rate scheduling model is derived from the developed cutting force model. The scheduled feed rates are automatically added to a given set of NC code, which regulates the maximum resultant cutting force to the reference force preset by an operator. The cutting simulation system can be used as an effective tool for improvement of productivity in CNC machining.

  • PDF

정면 밀링의 절삭력 해석을 위한 평균 비절삭저항 모델의 개발 (Development of mean specific cutting pressure model for cutting force analysis in the face milling process)

  • Lee, B.C.;Hwang, J.C.;Kim, H.S.
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.13-25
    • /
    • 1994
  • In order to design and improve a new machine tool, there is a need for a better understanding of the cutting force. In this paper, the computer programs were developed to predict not only the mean specific cutting pressure but also the cutting force. The simulated cutting forces in X, Y, Z directions resulted form the developed cutting force model were compared with the measured cutting forces in the time and frequency domains. The simulated cutting forces resulted from the new cutting force model have a good agreement with the measured force in comparison with these resulted from the existing cutting force model.

  • PDF

2차원 윤곽가공에서 이송률 자동 조정 (Automatic Feedrate Adjustment for 2D Profile Milling)

  • 고기훈;서정철;최병규
    • 한국CDE학회논문집
    • /
    • 제5권2호
    • /
    • pp.175-183
    • /
    • 2000
  • Proposed in this paper is a model-bated AFA (automatic feedrate-adjustment) method for maintaining smooth cutting-loads (i.e., cutting-force) during 2D-profile milling. Before the cutting-force model was established, some assumptions were verified through a series of preliminary cutting experiments (The results found that the curving-force was independent of the cutting speed and the cutting action at the cutter bosom). From the data obtained during the main cutting experiments, a “chip-load/cutting-force model”representing the cutting-force as a function of the chip-load (i.e., effective cutting-depth) and a feedrate is proposed. Based on the model. an AFA scheme for maintaining smooth cutting-force by adjusting the feedrate (i.e., F-code) according to the changes in chip-load was proposed. To check the validity of the proposed AFA scheme. another set of cutting experiments was conducted by using feedrate-adjusted NC-data while monitoring the actual machining processes using an accelerometer. The experimental results showed that the proposed AFA-scheme was quite effective.

  • PDF

정면밀링가공에서 쟁기력을 고려한 3차원 절삭력 모델링 (A Mechanistic Model for 3 Dimensional Cutting Force Prediction Considering Ploughing Force in Face Milling)

  • 권원태;김기대
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.1-8
    • /
    • 2002
  • Cutting force is obtained as a sum of chip removing force and ploughing force. Chip removing force is estimated by multiplying specific cutting pressure by cutting area. Since ploughing force is caused from dullness of a tool, its magnitude is constant if depth of cut is bigger than a certain value. Using the linearity of chip removing force to cutting area and the constancy of ploughing force regardless of depth of cut which is over a certain limit each force is separated from measured cutting force and used to establish cutting force model. New rotation matrix to convert the measured cutting force in reference axes into the forces in cutter axes is obtained by considering that tool angles are projected angles from cutter axes to reference axes.. Spindle tilt is also considered far the model. The predicted cutting force estimated from the model is in good agreement with the measured force.

자기회귀 벡터모델을 이용한 정면밀링의 동절삭력 모델해석 (An Analysis of Dynamic Cutting Force Model for Face Milling Using Modified Autoregressive Vector Model)

  • 백대균;김정현;김희술
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2949-2961
    • /
    • 1993
  • Dynamic cutting process can be represented by a closed-loop0 system consisted of machine tool structure and pure cutting process. On this paper, cutting system is modeled as a six degrees of freedom system using MARV(Modified Autoregressive Vector) model in face milling, and the modeled dynamic cutting process is used to predict dynamic cutting force component. Based on the double modulation principle, a dynamic cutting force model is developed. From the simulated relative displacements between tool and workpiece the dynamic force domponents can be calculated, and the dynamic force can be obtained by superposition of the static force and dynamic force components. The simulated dynamic cutting forces have a good agreement with the measured cutting force.

STS 304 엔드밀 가공시 공구마멸을 고려한 절삭력 예측 (Cutting Force Prediction in End Milling of STS 304 Considering Tool Wear)

  • 김태영;정은철;신형곤;오성훈
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.46-53
    • /
    • 1999
  • Cutting force characteristics is closely related with tool wear on the end milling. And it is found that the tool wear can be properly obtained by observation through the tool-maker's microscope when STS 304 is cut using an end mill. The relationship between the tool wear and the cutting force is established based on data obtained from a series of experiments. A cutting force model can be derived from basic cutting force model using parasitic force components of this tool wear. The results of th simulation using the cutting force model proposed in this paper were verified experimentally and a good agreement was partly obtained. The proposed model is capable of predicting increased cutting force due to tool wear.

  • PDF

평균 비절삭저항을 이용한 정면 밀리의 동절삭력 모델 개발 (Development of Dynamic Cutting Force Model by Mean Specific Cutting Pressure in Face Milling Process)

  • 이병철;백대균;김희술
    • 한국정밀공학회지
    • /
    • 제12권8호
    • /
    • pp.39-52
    • /
    • 1995
  • In order to design and improve a new machine tool, there is a need for a better understanding of the dynamic cutting force. In this paper, the computer programs were developed to predict the dynamic cutting force by the mean specific cutting pressure in the face milling process. The simulated cutiing forces in X, Y, Z directions resulted from the developed dynamic cutting force model are compared with the measured cutiing forces in the time and frequency domains. The simulated cutting force model have a good agreement with the measured forces in comparison with those resulted from the existing cutting force model.

  • PDF

엔드밀 가공시 동적 절삭력 모델에 의한 절삭력 및 표면형상 예측 (The Prediction of Cutting Force and Surface Topography by Dynamic Force Model in End Milling)

  • 이기용;강명창;김정석
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.38-45
    • /
    • 1997
  • A new dynamic model for the cutting process inb the end milling process is developed. This model, which describes the dynamic response of the end mill, the chip load geometry including tool runout, the dependence of the cutting forces on the chip load, is used to predict the dynamic cutting force during the end milling process. In order to predict accurately cutting forces and tool vibration, the model which uses instantaneous specific cutting force, inclueds both regenerative effect and penetration effect, The model is verified through comparisons of model predicted cutting force with measured cutting force obtained from machining experiments.

  • PDF

모델에 근거한 선삭력 모니터링 (Model-Based Monitoring of the Turning Force)

  • 허건수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.11-15
    • /
    • 1999
  • Monitoring of the cutting force signals in cutting process has been well emphasized in machine tool communities. Although the cutting force can be directly measured by a tool dynamometer, this method is not always feasible because of high cost and limitations in setup. In this paper an indirect cutting force monitoring system is developed so that the cutting force in turning process is estimated based on a AC spindle drive model. This monitoring system considers the cutting force as a disturbance input to the spindle drive and estimates the cutting force based on the inverse dynamic model. The inverse dynamic model represents the dynamic relation between the cutting force, the motor torque and the motor power. The proposed monitoring system is realized on a CNC lathe and its estimation performance is evaluated experimentally.

  • PDF