• 제목/요약/키워드: Cutting dynamics

검색결과 129건 처리시간 0.025초

자동회귀-이동평균(ARMA) 모델에의한 초음파 진동 절삭 공정의 해석

  • 최인휴;김정두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 춘계학술대회 논문집
    • /
    • pp.160-165
    • /
    • 1993
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identfy cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modelling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Data System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequencyand damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

2자유도 제어기를 이용한 CNC볼엔드밀링 공정에서 절삭력과 위치의 동시제어 (Simultaneous Control of Cutting Force and Position Using Two Degree-of- Freedom Controller in CNC Ball-end Milling Process)

  • 양호석;심영복;이건복
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.536-542
    • /
    • 2002
  • There are two important variables in machining process control, which are feed and cutting speed. In this work, a two degree-of-freedom controller is designed and implemented to achieve on-line cutting force control and position control based on the modelling of cutting process dynamics which are established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and spindle speed control under the constant feed speed. The second is a simultaneous control of feed and spindle speed. The last performs a position control under the constant cutting force. Those are confirmed to work properly. Especially the latter shows a faster response.

  • PDF

CNC 볼엔드밀링 공정에서 2자유도 제어기를 이용한 절삭력 제어 (Cutting Force Control Using A Two Degree-of-Freedom Controller in Ball-end Milling Processes)

  • 양호석;심영복;이건복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.219-224
    • /
    • 2002
  • There are two important variables in machining process control, which are feed and cutting speed. In this work, a two degree-of-freedom controller is designed and implemented to achieve on-line cutting force control based on the modelling of cutting process dynamics which are established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and spindle speed control under the constant fled speed. The second is a simultaneous control of feed and spindle speed. Those are confirmed to work properly. Especially the latter shows a faster response and we'll be evaluated to pare away workpiece by simultaneous control of position and cutting farce sooner or later.

  • PDF

엔드밀링가공시 과도 영역에서의 안정성 평가 (Stability Analysis in Transient Cut during Endmilling)

  • 강석재;조동우
    • 한국정밀공학회지
    • /
    • 제18권3호
    • /
    • pp.195-204
    • /
    • 2001
  • Virtual computer numerical control(VCNC) arises from the concept that one can experience pseudo-real machining with a computer-numerically-controlled(CNC) machine before actually cutting an object. To achieve accurate VCNC, it is important to determine abnormal behavior, such as chatter, before cutting. Detecting chatter requires an understanding of the dynamic cutting force model. In general, the cutting process is a closed loop system that consists of structural and cutting dynamics. Machining instability, namely chatter, results from the interaction between these two dynamics. Several previous reports have predicted stability for a single path, using a simple cutting force model without tool runout and penetration effects. This study considers both tool runout and penetration effects, using experimental modal analysis, to obtain more accurate predictions. The machining stability in the corner cut, which is a typical transient cut, was assessed from an evaluation of the cutting configurations at the corner.

  • PDF

이송 및 주축속도 가변속에 의한 볼 엔드밀 절삭공정의 절삭력 추적제어 (Cutting Force Control by Variable Feed and Spindle Speed in Ball-end Milling Process)

  • 이천환;이승욱;이건복
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.73-80
    • /
    • 1993
  • There and two important variables in machining process control, which are feed and cutting speed. It is possible to improve the machining accuracy and the productivity by maintaining the optimal feed and cutting speed. In this work, a controller is designed to achieve on-line cutting force control based on the modeling of cutting process dynamics established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and the second is spindle speed control under the constant feed. Finally, both are proved to work properly through simulation and experimentation.

  • PDF

견실한 서보적응제어기를 응용한 절삭력 추종제어 (Application of an Adaptive Robust Controller to Cutting Force Regulation)

  • 김종원
    • 대한기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.78-89
    • /
    • 1991
  • 본 연구에서는 ARSC를 엔드밀링 공정에 적용하여, 절삭력을 추종제어하는 실 예를 제시하고자 한다.제2장에서는 ARSC를 절삭공정에 일반적으로 적용하기 위한 구체적인 이론전개를 설명하여, 제3장에 실시간 시뮬레이션의 방법과 결과를 예시하 고,마지막으로, 제4장에 엔드밀링 절삭시험을 위한 장치의 구성 및 그 결과를 설명하 였다.

볼-엔드 밀링가공시 절삭력의 시뮬레이션에 관한 연구 (A Study on the Cutting Force Simulation for Ball-end Milling Operation)

  • 홍민성;김종민
    • 한국공작기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.84-91
    • /
    • 2003
  • In metal cutting operation, it is very important that predict cutting force and work surface. Vibration is an unstable cutting phenomenon which is due to the interaction of the dynamics of the chip removal process and the structural dynamics of machine tool. When vibration on, it reduces tool life, results in poor surface roughness and low productivity of the machining process. In this study, the experiments were conducted in machining center without cutting fluid to investigate the phenomenon of vibration. In the experiments, accelerometers were set up at the tail stock and tool holder and signals were picked up. Surface roughness profiles are generated under the ideal condition and the occurrence of vibration based on the surface shaping simulation model.

밀링가공시 절삭력의 시뮬레이션에 관한 연구 (A Study on the Cutting Force Simulation for Ball-end milling Operation)

  • 홍민성;김종민
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.184-189
    • /
    • 2003
  • In metal cutting operation, it is very important that predict cutting force and work surface. Vibration is an unstable cutting phenomenon which is due to the interaction of the dynamics of the chip removal process and the structural dynamics of machine tool. when Vibration occurs, it reduces tool life, results in poor surface roughness and low productivity of the machining process. In this study, the experiments were conducted in machining center without cutting fluid to investigated phenomenon of the Vibration. In the experiments, accelerometers were set up at the tail stock and tool holder and the signals were picked up. In this paper, surface roughness profiles will be generated under the ideal condition and the occurrence of the vibration based on the surface shaping simulation model.

  • PDF

만능형 머시닝센터의 진동실험 및 절삭안정성 예측 (Vibration Experiment and Stability Prediction of a Universal Machining Center)

  • 이신영;김종원
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.219-224
    • /
    • 2004
  • There have been many researches on machine tool vibration and chatter to obtain assessment procedure and more productivity. In this paper chatter limit is predicted on a universal machining center which used a parallel mechanism. The prediction method uses the combination of structural dynamic characteristics and cutting dynamics. So the dynamic characieristics were obtained by vibration experiments. We showed the unstable cutting conditions, and from them we could plot the unstable borderlines.

  • PDF