• 제목/요약/키워드: Cutting depth factor

검색결과 53건 처리시간 0.022초

계단형상 체적의 엔드밀 가공시 절삭력 변화 특성에 관한 연구 (Cutting Force Variation Characteristics in End Milling of Terrace Volume)

  • 맹희영
    • 한국생산제조학회지
    • /
    • 제22권3_1spc호
    • /
    • pp.489-495
    • /
    • 2013
  • This study analyzed thevariation in the cutting force when the cutting area of a terrace volume is machined, which is generally left after the rough cutting of a sculptured surface. The numerically simulated results for the cutting forces are compared with cutting force measurements by considering the theoretical prediction of the cutting area formation and specific cutting volume. The variation in the cutting force is measured using a dynamometer installed on a machining center for 19 different kinds of test pieces, which are selected according to the variation in the terrace volume factor, tool diameter factor, and cutting depth factor. As a result, it is verified that the cutting forces evaluated by the numerical analysis coincide with the measured cutting forces, and it is proposed as a practical cutting force prediction model.

초정밀 절삭에서의 가공깊이 최소화에 관한연구 (A Study on the minimizing of cutting depth in sub-micro machining)

  • 손성민;허성우;안중환
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.376-381
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor affecting the qualities of machined parts. That is why diamond especially mono-crystal diamond, which has the sharpest edge among all other materials is widely used in micro-cutting. The question arises, given a diamond tool, what is the minimum (critical) depth of cut to get continuous chips while in the cutting process\ulcorner In this paper, the micro machinability around the critical depth of cut is investigated in micro grooving with a diamond tool, and introduce the minimizing method of cutting depth using vibration cutting. The experimental results show the characteristics of micro cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardeing around the critical depth of cut.

  • PDF

A Study on Critical Depth of Cuts in Micro Grooving

  • Son, Seong-Min;Lim, Han-Seok;Paik, In-Hwan;Ahn, Jung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.239-245
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor which affects the qualities of machined parts. That is why diamond, especially monocrystal diamond which has the sharpest edge among all other materials, is widely used in micro-cutting. The majar issue is regarding the minimum (critical) depth of cut needed to obtain continuous chips during the cutting process. In this paper, the micro machinability near the critical depth of cut is investigated in micro grooving with a diamond tool. The experimental results show the characteristics of micro-cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardening nea. the critical depth of cut.

엔드밀 가공중 절입깊이의 실시간 추정을 이용한 가공오차 예측 (In-Process Prediction of the Surface Error Using an Identification of Cutting Depths in End Milling)

  • 최종근;양민양
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.114-123
    • /
    • 1998
  • In the end milling process, the information of the surface errors plays an important role in adaptive control systems for precision machining. As the measuring accuracy of the surface errors directly matches the control's, it is an important factor for evaluating the performance of the system. In order to obtain the surface errors, the prediction using the cutting force, torque, motor power etc. is frequently practiced owing to the easiness in measurement. In the implementation of the prediction, the information on the cutting depths make it concrete and precise. Actually the axial depth of cut limits the range of the calculation. In general, it is not easy to know the cutting depths due to irregular shape of workpieces, inaccurate positioning of them on the table of machine tool, and machining error in the previous cutting. In addition to, even if cutting depths are informed, it is difficult to match the individual position of the cutter on the varying shape of the work material. This work suggests an algorithm estimating the cutting depths based on cutting force and makes it precise to predict the surface error. The proposed algorithm can be applied in more extensive cutting situations, such as presence of the tool wear, change of the work material hardness, etc.

  • PDF

최적 절삭속도및 피이드 선정 전문가 시스템 (Expert System for optimal cutting speed and feed rate selection)

  • 이건범;김연민
    • 산업공학
    • /
    • 제9권1호
    • /
    • pp.1-10
    • /
    • 1996
  • In this study, expert system for the selection of the optimal cutting speed and feed rate was developed using NEXPERT system shell. The NC system has been usually used inefficiently because the input command, which contains cutting speed, feed-rate and the depth of cut, is fixed value which depends on principally operator's experience and machining handbooks providing a guideline for applicable ranges. On the other hand, the optimal cutting conditions vary with time, and depend on tool and machine characteristics, work materials, and cost factor and so on. In this study, if cutting factors, such as, cutting method, material type, cutting depth, and tool nose radius are specified, our expert system gets the information about the standard cutting speed form the cutting speed database, and provides optimum feed rate for these cutting conditions. This cutting speed database can be updated by inputting valid cutting speed which is obtained form the practices.

  • PDF

단침보강 세라믹 공구를 이용한 플라스틱 금형강(STAVAX)의 선삭가공 (Turning of Plastic Mold Steel(STAVAX) using Whisker Reinforced Ceramic)

  • 배명일;이이선
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.36-41
    • /
    • 2012
  • In this study, we turning plastic mold steel (STAVAX) against cutting speed, depth of cut, feed rate using whisker reinforced ceramic tool (WA1). To predict cutting force, analyze principal, radial, feed force with multi-regression analysis. Results are follows: From the analysis of variance, affected factor to cutting force feed rate, depth of cut, cutting speed in order and cutting speed was very small affect to cutting force. From multi-regression analysis, we extracted regression equation and the coefficient of determination$(R^2)$ was 0.9, 0.88, 0.856 at principal, radial and feed force. It means regression equation is significant. From the experimental verification, it was confirmed that principal, radial and feed force was predictable by regression equation.

농형회전자의 유효절삭조건에 관한 연구(2) (A study on the Effective Cutting Conditions of Cage Motor Rotor(2))

  • 김희남
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 추계학술대회 논문집
    • /
    • pp.30-36
    • /
    • 1995
  • This paper proposed on the effective cutting conditions of cage motor rotor by turning. If you want to introduce automatic manufacturing system into the cutting process of cage motor rotor, the selections of effective cutting conditions are necessary. The cutting process of cage motor rotor requires the precision and the out of roundness of cage motor rotor. The surface roughness of cutting face. it is very important factor with effect on the magnetic flux density of cage motor rotor. The purpose of this study is to find out the effects of cutting condition. upon adapting this results, we will improve the production rate in the cutting process of cage motor rotor. As a result, the selection of cutting conditions are important factors to production rate. And these are chosen by the investigations of cutting characters and surface roughness. The experimental result, showed that the increase of cutting speed caused the decrease of cutting force and the high surface integrity. The increase of feed rate and increase of depth of cut caused the increase of cutting force and surface roughness. Thus, the effective cutting conditions of cage motor rotor by turing are cutting speed 291m/min, feed rate 0.10mm/rev, depth of cut 0.05mm.

  • PDF

티타늄 가공에서 절삭력 분석을 위한 ADL 밀링 가공특성 (ADL Milling Characteristics for the Analysis of Cutting Force of Titanium Machining)

  • 한정식;정종윤
    • 산업경영시스템학회지
    • /
    • 제45권3호
    • /
    • pp.104-114
    • /
    • 2022
  • The purpose of using coolant in machining is both to increase a tool life and also to prevent product deformation and thus, stabilize the surface quality by lubricating and cooling the tool and the machining surface. However, a very small amount of cutting mist should be used because chlorine-based extreme pressure additives are used to generate environmental pollutants in the production process and cause occupational diseases of workers. In this study, medical titanium alloy (Ti-6Al-7Nb) was subjected to a processing experiment by selecting factors and levels affecting cutting power in the processing of the Aerosol Dry Lubrication (ADL) method using vegetable oil. The machining shape was a slot to sufficiently reflect the effect of the cutting depth. As for the measurement of cutting force, the trend of cutting characteristics was identified through complete factor analysis. The factors affecting the cutting force of ADL slot processing were identified using the reaction surface analysis method, and the characteristics of the cutting force according to the change in factor level were analyzed. As the cutting speed increased, the cutting force decreased and then increased again. The cutting force continued to increase as the feed speed increased. The increase in the cutting depth increased the cutting force more significantly than the increase in the cutting speed and the feed speed. Through the reaction surface analysis method, the regression equation for predicting cutting force was identified, and the optimal processing conditions were proposed. The cutting force was predicted from the secondary regression equation and compared with the experimental value.

Co-Cr-Mo 합금의 선삭 가공 특성에 관한 연구 (A Study on the Machining Characteristics of Co-Cr-Mo Alloy in Turning Process)

  • 홍광표;조명우;최인준
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.50-54
    • /
    • 2017
  • In this study, researches were conducted as follows. First, as the basic experiment, the cutting speed, feedrate, and the depth of cut were set as the process parameters, and by setting the surface roughness as the factor of measurement for each of the combinations, and the analysis about cutting tendency of the material was conducted by proceeding the turning process of Co-Cr-Mo alloy. Second, by setting the feature of the surface roughness according to the 'turning processing condition' that was confirmed in the previous experiment, and by applying the Taguchi Method, the conditions that influence the features of the surface roughness according to the 'turning processing condition' of Co-Cr-Mo was analyzed, and also by measuring the surface roughness according to each of the 'cutting conditions', the optimal processing condition was generated. As the result of analysis, it was possible to understand that the factor that mostly affects the surface roughness was the cutting speed, followed by the dept of cutting and transfer speed, and as for the optimal processing condition, it was possible to find that the cutting speed was 5,000rpm, and the depth of cut was 0.1mm, and the feedrate was 0.003mm/rev, and the value of the surface roughness at this point is $0.197{\mu}m$.

Water jet 절단에서의 연마재 종류별 성능 비교 시험 (Comparison of cutting performance of an AWJ with several types of abrasives)

  • ;최병희
    • 터널과지하공간
    • /
    • 제6권2호
    • /
    • pp.175-183
    • /
    • 1996
  • Linear cutting tests on granite were conducted to evaluated the cutting performance of abrasive water jet(AWJ) using several types of abrasives. The abrasives used in the tests were grarnet, alumimum oxide, and silicon carbide. And one type of granite which is comercially known as "KeuchangSuk" was used as workpiece throughout the tests. The results from the tests were described in terms of cutting depth and abrasive productivity. Authors tried to confirm the effects of the operational parameters of abrasive mass flow rate, water pressure, and traverse speed of nozzle on cutting depth and presented almost all the data obtained in the tests. Abrasive productivity can be defined as the area of kerf wall cut by unit weight of abrasive and is an important factor to evaluated the cutting ability of abrasive and assess the cost effectiveness of an AWJ system. In the tests the maximum abrasive productivities of garnet, alumina, and silicon carbide were about 0.21, 0.24, and 0.20 $\textrm{cm}^2$ respectively under similar operational conditions.onditions.

  • PDF