• Title/Summary/Keyword: Cutting Width

Search Result 284, Processing Time 0.02 seconds

A Study on the Cutting Criteria and Cutting Characteristics Considering the Tool Slenderness Ratio for 7075 Aluminum Alloy (공구세장비에 따른 알루미늄합금 7075의 절삭특성 및 가공가능영역에 관한 연구)

  • Park, H.M.;Park, H.C.;Son, H.J.;Cho, Y.T.;Jung, Y.G.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.40-46
    • /
    • 2013
  • When impeller machining needs to be machined over a length in order to avoid interference with neighboring surfaces between material and tool, there are no databases about cutting condition according to tool slenderness ratio. So selection and machining of cutting condition depends on expert's experience. Therefore, the purpose of this paper is deciding cutting condition in roughing and finishing process of impeller according to slenderness ratio of AL7075's end-mill that is the most commonly used for impeller. We have tested for about relation between Slenderness ration and fluctuation width of the cutting force, surface roughness and depth of cut ratio to observe cutting characteristics according to slenderness ratio. The experiments of cutting characteristics and processing criteria are compared with AL5052 which is existing information.

레이져 절단에서 노즐이 미치는 영향

  • 이호준;김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.81-85
    • /
    • 1992
  • Quality of cut is strongly dependent on the cutting pressure, so this relationship can be identified by pressure measuring system. In this paper, the experiments presented were performed with the devised pressure measuring system and the laser cutting of STS 304. Convergent type and convergent-divergent type nozzle were used for pressure variation of the distance between nozzle and workpiece. In laser cutting of STS 304, 1.0 kW CO $\_$2/ laser used. The convergent type nozzle(1.0 mm diameter) pressured above 3 kgf/cm $\^$2/, the MSD(Mach Shock Disk) created, which caused the the pressure variations of the distance between nozzle and workpiece. The maximum cutting pressure exists in accordance with the variation of distance. In spite of far distance the maximum cutting pressure is achieved by using the pressure measuring system. The higher cutting pressure beneath the workpiece the less quantity of dross and the kerf width. Since the higher cutting pressure helps to remove the quantity of dross and to stop the exothermic energy into the material. The optimum laser cutting parameter of STS 304(2.0 mm thickness) with the convergent type nozzle(1.0 mm diameter)is 0.75 mm and 2.5 mm distance between nozzle and workpiece, 4 kgf/cm $\^$2/ cutting pressure. In 3.0 mm thickness case, 1.5 mm and 2.25 mm distance is achieved for good quality.

A Study on the Detection of Chatter Vibration using Cutting Force Measurement (절삭력을 이용한 채터의 감지에 관한 연구)

  • 윤재웅
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.150-159
    • /
    • 2000
  • In-process diagnosis of the cutting state is essential for the automation of manufacturing systems. Especially when the cutting process becomes unstable it induces self-exited vibrations a frequent case of poor tool life rough surface finish damage to the workpiece and the machine tool itself and excessive down time. To ensure that the cutting process main-tains stable it is highly desirable to have the capability of real-time. To ensure that the cutting process main-tains stable it is highly desirable to have the capability of real-time monitoring and controlling chatter. This paper describes the detection method of chatter vibration using cutting force in turning process. In order to detect a chatter vibra-tion the dynamic fluctuation of radial force is analyzed since this components is sensitive to the chatter. The envelope sig-nal of radial force has been calculated by the use of FIR Hilbert transformer and it was useful to classify the chatter signal from the dynamically unstable circumstances. It was found that the mode and the mode width were closely correlated with the chatter amplitude was well. Finally back propagation(BP) neural network have been applied to the pattern recognition for the classification of chatter signal in various cutting conditions. The validity of this systed was confirmed by the experiments under the various cutting conditions.

  • PDF

A Study of an Automatic Tip-to-Workpiece Distance Control System for Plasma Arc Cutting (플라즈마 아크 절단에서 팁-모재간 거리 자동제어 시스템에 관한 연구)

  • 구진모;김재웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.132-140
    • /
    • 2000
  • Plasma arc cutting is one of the most widely used processes in metal cutting fields and is a process that produces parted metal plates by cutting them with an arc plasma established between the electrode tip and the plate(workpiece). When the tip-to-workpiece distance varies during cutting, the cut quality, for example the kerf width, is deteriorated by the change of plasma arc. The variations of tip-to-workpiece distance are due to the different factors such as inaccuracies in setting the torch or workpiece, thermal distortions during cutting, and uneven surface of workpiece. The control to keep the tip-to-workpiece distance constant is thus indispensable to improve the flexibility of automatic plasma arc cutting system applications. In this study, an arc sensor which utilizes the electrical signal obtained from the plasma arc itself was developed. The arc sensor has an advantage that no particular sensing device is necessary and real-time sensing of the tip-to-workpiece distance is possible directly under the plasma arc. The relationship between plasma arc voltage and tip-to-workpiece distance was determined through the repeated experimental results. The model was used for developing an automatic tip-to-workpiece distance control system of plasma arc cutting. It could be shown that the proposed system has a successful capability of tip-to-workpiece distance control.

  • PDF

Fabrication of Micro/nanoscale Cutting Tool Geometry of Single Crystal Diamond Tool by Focused Ion Beam (집속이온빔(Focused Ion Beam)에 의한 단결정 다이아몬드 공구의 마이크로/나노스케일 절삭공구 형상 제작)

  • Baek, Seung Yub;Jang, Sung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.207-213
    • /
    • 2014
  • A study was carried out to fabricate the cutting tool geometry with micro/nanoscale on the single crystal diamond tool by using the FIB. The FIB technique is an ideal tool for TEM sample preparation that allows for the fabrication of electron-transparent foils. The FIB is appropriate techniques to sample and subsequently define the chemical composition and the structural state of mineral inclusion on the micro/nanoscale. The combination of FIB with a SEM allows for 3D information to be obtained from samples including 3D imaging. Cutting strategies were demonstrated to improve the performance of cutting tool geometry and to generate high aspect ratio micro cutting tool. A finely focused beam of 30keV Ga+ ions was used to mill cutting tool shapes for various micro patterns. Therefore FIB sputtering is used to shape a variety of cutting tools with dimensions in the $1-5{\mu}m$ range and cutting edge radii of curvature of under 50nm.

Influence of Cutting Pressure on Laser Cut Quality (Relationship between Cutting Pressure and Cut Quality) (레이저 절단품질에 미치는 절단압력의 영향(2) (절단압력과 절단품질간의 상관관계))

  • Yang, Yeong-Su;Na, Seok-Ju;Kim, Won-Bae;Kim, Tae-Gyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.1
    • /
    • pp.63-70
    • /
    • 1988
  • Laser cutting system uses a gas jet to remove the molten or varpozed material from the workpiece. The quality of the laser cut can be strongly influenced by the gas flow charac- teristics formed through the nozzle. Laser cutting experiments were carried out for SS41 and SUS 304 to investigate the relationship between cut quality and cutting pressure. The cutting speed, nozzle pressure and nozzle to workpiece distance were also considered. The cut specimens were inspected by various manners such as dross observation, surface roughness test and kerf width measurement. Based on the data of pressure measurement on workpiece and the results of cut surface inspection, the influence of the considered cutting conditions on cut quality could be evaluated. The results of this study will be valuable in planning the optimal laser cutting process and in designing the laser cutting nozzle.

  • PDF

A Study on Micro-grooves Cutting Using Flat-end Mill (플랫 엔드밀을 이용한 미세 홈 가공에 관한 연구)

  • 이재일;이채문;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.209-214
    • /
    • 2002
  • Mechanical micro-engineering is an easy and cheap way to fabricate micro-structures. If the application of the conventional machining method using flat-end mill becomes available for the micro-manufacturing process, it will be advanced as an extension of the conventional machining process. In this study, micro-grooves cutting using flat-end mill(($\phi$8) was performed. The characteristics on flat-end milling was investigated to improve machinability of micro-grooves. The experiments were performed according to variations of spindle revolution, depth of cut, and feed rate. Machinability through various cutting conditions was evaluated by surface geometry, tool wear, and cutting force. The results show that micro V-grooves of width(pitch) 29${\mu}{\textrm}{m}$ were acquired by flat-end milling. The maximum and minimum roughness of the wall of grooves was 438 and 67nm, respectively

  • PDF

CW 및 Pulsed 레이져를 이용한 세라믹 절단

  • 방세윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.156-160
    • /
    • 1994
  • Use of engineering ceramics has been increasing due to the outstanding physical and chemical properties. Conventional machining processes, however, are not applicable due to their hardness and brittleness. Laser cutting is a promising alternative for these ceramics. In this study, experimental data of CO $_{2}$ laser cutting of $Al_{2}$ $O_{3}$ and Si $_{3}$ N $_{4}$ are obtained to give a guide in the industry. Results of $Al_{2}$ $O_{3}$ cutting showed extreme weakness to thermal crack and it was found that pulsed beam has to be used for thick $Al_{2}$ $O_{3}$ specimen. Si $_{3}$ N $_{4}$ showed good results for both CW and pulsed beams. Using pulsed beam resulted narrower kerf width with increased surface roughness a nd reduced cutting speed. It was also found that a parameter call path energy is useful for representing minimum threshold value for possible cutting range with pulsed beam.

  • PDF

Effect of Chip Breaker Shape and Cutting Condition on the Chip Breaking and Surface Roughness (칩브레이커의 형상과 절삭조건이 칩 절단과 표면거칠기에 미치는 영향)

  • 나기철;태순호;이병곤
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.17-28
    • /
    • 1994
  • Chip breaking is important in lathe work for maintaining good surface of the products and safety of operator. The purpose of this study is to investigate the performance of chip breaking and chip shape resulted from the carbide inserts with grooved type and obstruction type chip breaker. Experiments have been performed under the following cutting conditions, (1) constant cutting speed with variable depth of cut and feed rate, (2) constant depth of cut with variable cutting speed and feed rate. Also, the flying distance of chip and it's distribution have been investigated. As a results, good performance of chip breaking can be obtained for small radius of curvature and land width of grooved type chip breaker. And the thickness of chip increase with the increase of feed rate and decrease of cutting speed, and the chip breaking becomes easier with the increase of chip thickness due to the large deformation rate. Obstraction type chip breaker shows better performance of surface roughness than the grooved type. The flying distance of the chips over 90% are less than 1 meter, and the distance decreases as the feed rate decreases.

  • PDF

3D Cutting Machine of EPS Foam for Manufacturing Free-Formed Concrete Mold (비정형 콘크리트 거푸집 제작을 위한 EPS Foam의 3D 가공기계)

  • Seo, Junghwan;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.35-39
    • /
    • 2017
  • We used a construction method using a CNC milling machine, where free-formed molds were made by cutting EPS (Expanded PolyStyrene) foam with the CNC machine, to build free-formed buildings. CNC milling is off-the-shelf technology that can easily cut EPS foam; however its production cost is too high and the time to manufacture an EPS mold is too long. This paper proposes a novel cutting machine with a fast and cost effective mechanism to manufacture EPS concrete molds. Our machine comprises a cutter and Cartesian coordinate type moving mechanism, where the cutter cuts EPS foam using a hotwire in the shape of '$\sqcap$' and is capable of adjusting its cutting angle in real-time while keeping its cutting width. We proved through cutting experiments on the CNC machine that cutting time was greatly shortened compared to the conventional method and that the resulting concrete mold satisfied manufacturing precision.