• 제목/요약/키워드: Cutting Offset

검색결과 53건 처리시간 0.024초

폴리우레탄폼 절삭가공시 공구보정에 관한 연구 (A Study on Tool Offset for Cutting of the Polyurethane Foam)

  • 민세홍;김희송
    • 한국안전학회지
    • /
    • 제15권2호
    • /
    • pp.31-35
    • /
    • 2000
  • After constructing master model utilizing CAD data originated by sketch, product NC data for polyurethane foam using digitized master model data. And model cutting is performed utilizing specially developed polyurethane foam cutting tool in machining center. In this study, it is discussed to construct concept of tool offset, method of tool offset and feature tolerance, etc., that is impossible for cutting of the polyurethane foam by CNC machine.

  • PDF

Continuous Tool-path Generation for High Speed Machining

  • Lee, Eung-Ki;Hong, Won-Pyo;Park, Jong-Geun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.31-36
    • /
    • 2002
  • A continuous tool-path, that is to cut continuously with the minimum number of cutter retractions during the cutting operations, is developed in order to minimise the fluctuation of cutting load and the possibility of chipping on the cutting edge in HSM (high-speed machining). This algorithm begins with the offset procedure along the boundary curve of the sculptured surface being machined. In the of offset procedure, the offset distance is determined such that the scallop height maintains a constant roughness to ensure higher levels of efficiency and quality in high-speed machining. Then, the continuous path is generated as a kind of the diagonal curve between the offset curves. This path strategy is able to connect to neighbor paths without cutter retractions. Therefore, the minimum tool retraction tool-path can be generated And, it allows the sculptured surface incorporating both steep and flat areas to be high-speed machined.

2차원 자유형상의 레이저 절단을 위한 CNC 공구경로 생성 (CNC Torch Path Generation for Laser Cutting of Planar Shapes)

  • 박형준;안동규
    • 한국CDE학회논문집
    • /
    • 제12권3호
    • /
    • pp.153-162
    • /
    • 2007
  • In this paper, we propose a knowledge-based method for generating CNC torch path for laser cutting of the outlines of planar shapes. The proposed method consists of two main phases: laser cutting knowledge construction and CNC torch path generation using the knowledge. In the first phase, cutting experiments are conducted on various operating parameters, and then empirical data are stored and analyzed to make up the knowledge of laser cutting. With this knowledge, we can inquire what a kerf width is for specific operating parameters. In the second phase, using the knowledge of laser cutting, CNC torch path is generated for cutting the outlines of the given planar shapes. This phase is basically based on the offset generation of each outline by a sequence of arc splines, where the offset distance is the same as the half of the kerf width determined from the constructed knowledge. The proposed method based on laser cutting knowledge makes full use of arc interpolators in CNC torch path generation. The method can efficiently reduce the number of path segments while keeping the torch path within the desired accuracy.

폴리우레탄폼 절삭에서 절삭력을 고려한 공구 오프셋이 가공정도에 미치는 영향에 관한 연구 (A Study of an Effect of Tool Offset on Cutting Precision Considering Cutting Force in Polyurethane Foam Cutting)

  • 민세홍;김희송
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.3018-3025
    • /
    • 2000
  • It is possible to shorten developing process by making model using polyurethane foam in the area of automobile development process, etc. However, this skill is too difficult to be of practical use because machining is not easy due to characteristic of polyurethane foam. Domestic and foreign automobile company use clay, polyurethane foam. etc,, those are easy to handle and to make model after completing design sketch. But these materials is difficult to the machined and be worked by humans hand, There are so many difficult problem for machining by making model using polyurethane foam since cutting of elastic body like polyurethan foam has never been studied. Therefore, in this study, it is investigated to measured cutting force that is generated in case of polyurethane foam machining, and to make systematize tool compensation of polyurethane foam cutting work on automobile model by modification of tool offset method on existing steel.

줄 꼬임 구동을 이용한 수확용 그리퍼의 줄기 절단 장치 설계 및 검증 (The Design and Evaluation of The Stem-cutting Device of Harvesting Gripper Using Twisted String Actuation System)

  • 최성모;이동우;황면중
    • 로봇학회논문지
    • /
    • 제19권3호
    • /
    • pp.244-253
    • /
    • 2024
  • This paper presents a novel stem-cutting device using a twisted string actuation system combined with the cinch bag-typed gripper proposed in previous research. The suggested cutting device was developed to cut the stem of a tomato using two motors. The relationship between contact time and motor angle was mathematically induced, and the contacting time was verified through the experiments. The contact time has decreased as the offset of each pair of strings at the disk increases. The contact time and its deviation were reduced by increasing the radius of the twisted string bundle, and the motor torque to exert an equivalent cutting force was surged at the same time. The proposed cutting mechanism with 16 strands of twisted string bundle and 40 mm of offset can cut the given tomato stems and stalks, exerting up to 132.4 N of cutting force in 4.6 to 6.5seconds.

VLM-ST공정의 정밀도 향상을 위한 알고리즘 개발 (Development of Algorithms for Accuracy Improvement in Transfer-Type Variable Lamination Manufacturing Process using Expandable Polystrene Foam)

  • 최홍석;이상호;안동규;양동열;박두섭;채희창
    • 한국CDE학회논문집
    • /
    • 제8권4호
    • /
    • pp.212-221
    • /
    • 2003
  • In order to reduce the lead-time and cost, the technology of rapid prototyping (RP) has been widely used. A new rapid prototyping process, transfer-type variable lamination manufacturing process by using expandable polystyrene foam (VLM-ST), has been developed to reduce building time, apparatus cost and additional post-processing. At the same time, VLM Slicer, the CAD/CAM software for VLM-ST has been developed. In this study, algorithms for accuracy improvement of VLM-ST, which include offset and overrun of a cutting path and generation of a reference shape are developed. Offset algorithm improves cutting accuracy, overrun algorithm enables the VLM-ST process to make a shape of sharp edge and reference shape generation algorithm adds additional shape which makes off-line lamination easier. In addition, proposed algorithms are applied to practical CAD models for verification.

가변 적층 쾌속 조형 공저 개발을 위한 발포 폴리스티렌폼의 선형 열선 절단시스템 절단 특성 및 접착강도 특성에 대한 연구 (Investigation of Cutting Characteristics of Linear Hotwire Cutting System and Bonding Characteristics of Expandable Polystyrene Foam for Variable Lamination Manufacturing(VLM) Process)

  • 안동규;이상호;양동열;신보성;이용일
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.185-194
    • /
    • 2000
  • Rapid Prototyping(RP) techniques have their unique characteristics according to the working principles: stair-stepped surface of parts due to layer-by-layer stacking, low build speed caused by line-by-line solidification to build one layer, and additional post processing to improve surface roughness, so it is required very high cost to introduce and to maintain of RP apparatus. The objective of this study is to develop a new RP process, Variable Lamination Manufacturing using linear hotwire cutting technique and expandable polystyrene foam sheet as part material(VLM-S), and to investigate characteristics of part material, cutting characteristics by using linear hotwire cutting system and bonding. Experiments were carried out to investigate mechanical properties of part material such as anisotropy and directional tensile strength. In order to obtain optimal dimensional accuracy, surface roughness, and reduced cutting time, addition experiments were performed to find the relationship between cutting speed and cutting offset of hotwire, and heat generation of hotwire per unit length. So, adhesion strength tests according to ASTM test procedure showed that delamination did not occur at bonded area. Based on the data, a clover-shape was fabricated using unit shape part(USP) it is generated hotwire cutting. The results of present study have been reflected on the enhancement of the VLM-S process and apparatus.

  • PDF

VLM-ST의 형상정밀도 향상에 관한 연구 (Improvement in Dimensional Accuracy of Transfer-type for Variable Lamination Manufacturing using Expandable Polystyrene Foam)

  • 최홍석;이상호;안동규;양동열;문영복;박두섭;채희창
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.1047-1050
    • /
    • 1997
  • Rapid Prototyping(RP) is an efficient method for rapid design verification and trial manufacturing. In order to improve their unique characteristics according to the working principles. Variable Lamination Manufacturing process and corresponding CAD/CAM system is developed. The objective of this study is to improve dimensional accuracy of VLM-ST process, and it can be done by offset for cutting error correction, cutting path correction for sharp edge and reference shape generation. To verify the proposed algorithms, they applied to three-dimensional shapes, such as spanner and mechanical part.

  • PDF

STL offset을 이용한 다이레스 CNC 포밍용 등고선 공구경로 생성 (Contouring Tool Path Generation for Dieless CNC Forming using STL Offset)

  • 강재관;최동우
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.191-198
    • /
    • 2006
  • Dieless CNC forming is an innovative technology which can form various materials with complex shape by numerically controlled incremental forming process. In this paper, a method of NC tool path generation based on an STL file for dieless CNC forming is proposed. Tool trajectory adopts the principle of layered manufacturing in rapid prototyping technology, but it is necessary to consider STL offset because of the ball shaped tool with a radius. Vertex offset method which enables to compute offset STL directly is engaged for STL offset. The offseted STL is sliced by cutting planes to generate contouring tool path. Algorithm is implemented on a computer and experimented on a dieless CNC forming machine to show its validity.

향상된 절삭력 예측을 위한 Size Effect 모델의 개발 (Development of the Size Effect Model for More Accurate Cutting Force Prediction)

  • 윤원수;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.995-1000
    • /
    • 2000
  • In this paper. a mechanistic model is first constructed to predict three-dimensional cutting forces, and the uncut chip th thickness is calculated by following the movements of the position of the center of a cutter, which varies with the nominal feed, cutter deflection and runout. For general implementation to a real machining, this paper presents the method that determines constant cutting force coefficients, irrespective of the cutting conditions or cutter rotation angles. In addition, this study presents the approach which estimates runout-related parameters. the runout offset and its location angle, using only one measurement of cutting forces. For more accurate cutting force predictions, the size effect has to be considered in the cutting force model. In this paper, two approximate methods are suggested since the strict approach is practically impossible due to a measurement problem. The size effect is individually considered for narrow and wide cuts.

  • PDF