• Title/Summary/Keyword: Cutting Interval

Search Result 71, Processing Time 0.025 seconds

Effect of Cut-off Intervals on Nutrients Removal Efficiency in Hydrophytes at the Artificial Vegetation Island (인공수초재배섬에서 수생식물 지상부 절취주기별 수중영양염류 제거효율)

  • Park, Hae-Kyung;Byeon, Myeong-Seop;Choi, Myung-Jae;Yun, Seok-Hwan;Jeon, Nam-Hui
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.221-226
    • /
    • 2009
  • We investigated the most effective cutting interval for underwater nutrient removal through cut off the emergent part of hydrophytes at artificial vegetation island (AVR) which was installed for the purpose of water quality improvement in Lake Paldang. We divided the planting area of Phragmites japonica into three parts according to the cutting intervals. The shoot height and relative growth rate of P. japonica, nutrient contents and biomass of cut off P. japonica were measured at each cutting interval. The amount of nutrients which were removed through cut off at each cutting interval was calculated. P. japonica showed full growth, 80% and 60% of full growth before first cut off at three-months, two-months and one-month cutting interval condition respectively. Three-month cutting interval condition showed the largest biomass of cut off P. japonica and one-month cutting interval condition showed the least. However the cut off P. japonica showed the highest content of nutrients at one-month cutting interval condition and the least at three-month cutting interval condition. The amount of phosphorus and nitrogen removal at two-month cutting off condition is the largest among three cutting interval conditions indicating that cut off the emergent part of P. japonica every two months is the most effective to remove the nutrients from water at AVR in eutrophic lakes.

Effect of Cutting Interval and Cutting Height on Yield and Chemical Composition of Hedge Lucerne (Desmanthus virgatus)

  • Suksombat, Wisitiporn;Buakeeree, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.1
    • /
    • pp.31-34
    • /
    • 2006
  • The experiment was conducted to determine the effects of cutting interval and cutting height on the yield and nutrient composition of hedge lucerne (Desmanthus virgatus) when grown on a sandy soil in the Northeast of Thailand. The cutting intervals compared were 30, 40 and 50 days between harvests and the cutting heights 30, 40 and 50 cm above ground level. The experiment was a $3{\times}3$ factorial layout in a randomized complete block design with 4 replications-giving a total of 36 plots each $3{\times}3m^2$. Harvested plant material was weighed, dried and the ground subsamples taken for analyses of crude protein (CP), crude fiber (CF), ash, ether extract (EE) and nitrogen-free extract (NFE). At the last harvest the hedge lucerne samples were separated to determine leaf to stem ratios and then analyzed for nutrient composition in the leaf and stem. Results showed that increasing the cutting interval (i.e. advancing age of maturity) increased dry matter and nutrient yields significantly. In terms of nutrient content, it also increased the crude fiber, ash, ether extract and nitrogen free extract percent in the plant. However, crude protein percent was markedly decreased as the cutting interval increased. Increasing cutting height had no effect on dry matter yield and yields of nutrients, but in terms of nutrient content, it increased crude protein and ash content, but decreased crude fiber content. The percent EE and NFE in the plant was unaffected by cutting height. From the results presented it is clear that cutting a stand of hedge lucerne every 40 to 50 days will achieve greater dry matter and nutrient yields than cutting more frequently, at 30 days. The cutting height at harvest, whether 30, 40 or 50 cm above ground level had no effect on dry matter or nutrient yields of hedge Lucerne. Hedge lucerne therefore offers the Thai poultry farmer a useful alternative protein supplement for poultry diets rather than relying on the more expensive soybean meal. As it can be readily and successfully grown on a range of soil types and climates throughout Thailand, hedge lucerne also offers the Thai farmer a valuable additional source of income.

Himalayan dock (Rumex nepalensis): the flip side of obnoxious weed

  • Wangchuk, Kesang
    • Journal of Animal Science and Technology
    • /
    • v.57 no.11
    • /
    • pp.34.1-34.5
    • /
    • 2015
  • Himalayan dock (Rumex nepalensis) was evaluated for forage value and antinutrients under three, five and seven weeks cutting intervals in the temperate environment. Dry matter (DM) content was measured for each cutting interval. Forage quality parameters such as Crude Protein (CP), Acid Detergent fiber (ADF), Neutral Detergent Fiber (NDF), Calcium (Ca) and Phosphorus (P) were analyzed. Plants with seven weeks cutting interval gave higher DM yield. CP and P content were significantly higher for three weeks cutting intervals. Average CP contents were 31.38 %, 30.73 % and 27.32 % and average P content 0.58 %, 0.52 % and 0.51 % for three, five and seven weeks cutting intervals, respectively. Ca content did not differ significantly between cutting intervals. The average Ca content were 0.91 %, 0.90 % and 90 %, for three, five and seven weeks cutting intervals, respectively. Tannin and mimosine contents were not significantly different between cutting intervals. Average tannin contents were 1.32 %, 1.27 % and 1.26 % and mimosine 0.38 %, 0.30 % and 0.28 % for three, five and seven weeks cutting intervals, respectively. The study concluded that R. nepalensis could be a potential source of protein for livestock. The study also suggests seven weeks harvesting interval to provide plants with high dry matter yield, high forage quality and very low levels of anti-nutrients.

Automatic NC-Date Generation Method for 5-axis Cutting of Turbine-Blades by Finding Safe Heel-Angles and Adaptive

  • Piao, Cheng-Dao;Lee, Cheol-Soo;Cho, Kyu-Zong;Park, Gwang--Ryeol
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.753-761
    • /
    • 2004
  • In this paper, an efficient method for generating 5-axis cutting data for a turbine blade is presented. The interference elimination of 5-axis cutting currently is very complicated, and it takes up a lot of time. The proposed method can generate an interference-free tool path, within an allowance range. Generating the cutting data just point to the cutting process and using it to obtain NC data by calculating the feed rate, allows us to maintain the proper feed rate of the 5-axis machine. This paper includes the algorithms for: (1) CL data generation by detecting an interference-free heel angle, (2) finding the optimal tool path interval considering the cusp-height, (3) finding the adaptive feed rate values for each cutter path, and (4) the inverse kinematics depending on the structure of the 5-axis machine, for generating the NC data.

Surface Roughness Prediction of Interrupted Cutting in SM45C Using Coated Tool (초경피복공구를 이용한 기계구조용 탄소강의 단속절삭시 표면거칠기 예측)

  • Bae, Myung-Il;Rhie, Yi-Seon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.77-82
    • /
    • 2014
  • In this study, we carried out the interrupted cutting of carbon steel for a machine structure (SM45C) with a CVD-coated tool and conducted an ANOVA test and a confidence interval analysis to find factors influence the surface roughness and to obtain a regression equation. We found that factor which mostly affects the surface roughness during interrupted cutting was the feed rate. The cutting speed and depth of the cut only had small effect on the surface roughness. From the result of a multi-regression analysis during an interrupted cutting experiment, we obtained regression equation. Its coefficient of determination was 0.918, indicating that the regression equation was predictable. Compared to continuous cutting, if the feed rate increases, the surface roughness will also increase during interrupted cutting.

Yield and Chemical Composition of Cassava Foliage and Tuber Yield as Influenced by Harvesting Height and Cutting Interval

  • Khang, Duong Nguyen;Wiktorsson, Hans;Preston, Thomas R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1029-1035
    • /
    • 2005
  • A 3${\times}$4 factorial field experiment with a complete randomised split-plot design with four replicates was conducted from June 2002 to March 2003 at the experimental farm of the Nong Lam University, Ho Chi Minh City, Vietnam, to determine effects of different harvesting heights (10, 30 and 50 cm above the ground) and cutting intervals (45, 60, 90 and 285 days) on yield of foliage and tubers, and chemical composition of the foliage. Cassava of the variety KM 94 grown in plots of 5 m${\times}$10 m at a planting distance of 30 cm${\times}$50 cm was hand-harvested according to respective treatments, starting 105 days after planting. Foliage from the control treatment (285 days) and all tubers were only harvested at the final harvest 285 days after planting. Dry matter and crude protein foliage yields increased in all treatments compared to the control. Mean foliage dry matter (DM) and crude protein (CP) yields were 4.57, 3.53, 2.49, and 0.64 tonnes DM $ha^{-1}$ and 939, 684, 495 and 123 kg CP $ha^{-1}$ with 45, 60, 90 and 285 day cutting intervals, respectively. At harvesting heights of 10, 30 and 50 cm the DM yields were 4.27, 3.67 and 2.65 tonnes $ha^{-1}$ and the CP yields were 810, 745 and 564 kg $ha^{-1}$, respectively. The leaf DM proportion was high, ranging from 47 to 65%. The proportion of leaf and petiole increased and the stem decreased with increasing harvesting heights and decreasing cutting intervals. Crude protein content in cassava foliage ranged from 17.7 to 22.6% and was affected by harvesting height and cutting interval. The ADF and NDF contents of foliage varied between 22.6 and 30.2%, and 34.2 and 41.2% of DM, respectively. The fresh tuber yield in the control treatment was 34.5 tonnes $ha^{-1}$. Cutting interval and harvesting height had significant negative effects on tuber yield. The most extreme effect was for the frequent foliage harvesting at 10 cm harvesting height, which reduced the tuber yield by 72%, while the 90 day cutting intervals and 50 cm harvesting height only reduced the yield by 7%. The mean fresh tuber yield decreased by 56, 45 and 27% in total when the foliage was harvested at 45, 60 and 90 day cutting intervals, respectively. It is concluded that the clear effects on quantity and quality of foliage and the effect on tuber yield allow alternative foliage harvesting principles depending on the need of fodder for animals, value of tubers and harvesting cost. An initial foliage harvest 105 days after planting and later harvests with 90 days intervals at 50 cm harvesting height increased the foliage DM and CP yield threefold, but showed only marginal negative effect on tuber yield.

An analysis of cutting process with ultrasonic vibration by ARMA model (자동회귀-이동평균(ARMA) 모델에 의한 초음파 진동 절삭 공정의 해석)

  • I.H. Choe;Kim, J.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.85-94
    • /
    • 1994
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is, an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identify cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modeling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Date System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequency and damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

  • PDF

자동회귀-이동평균(ARMA) 모델에의한 초음파 진동 절삭 공정의 해석

  • 최인휴;김정두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.160-165
    • /
    • 1993
  • The cutting mechanism of ultrasonic vibration machining is characterized as two phases, that is an impact at the cutting edge and a reduction of cutting force due to non-contact interval between tool and workpiece. In this paper, in order to identfy cutting dynamics of a system with ultrasonically vibrated cutting tool, an ARMA modelling is performed on experimental cutting force signals which have a dominant effect on cutting dynamics. The aim of this study is, through Dynamic Data System methodology, to find the inherent characteristics of an ultrasonic vibration cutting process by considering natural frequencyand damping coefficient. Surface roughness and stability of cutting process under ultrasonic vibration are also considered

A Study on the characteristics of the spherical surface machining in CNC milling (CNC 밀링에 의한 구면 가공시의 가공특성에 관한 연구)

  • 한흥삼;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.52-57
    • /
    • 1995
  • In order to suggest the proper cutting conditions of the CNC milling machining for the free-from surface, some experiments were carried out. In experiments, the influence of cutting conditions on the inclined spherical surface were examined by geometrical anlysis. In thos study, the roundness and cutting force were measured to know the effect of several cutting conditions on the machined surface and the cutting characteristics were carefully investigated. As the result, it was appeared that rigidder tool must be used and the cutting speed must be maintained constantlyfor more effective machining. It can be also known from the experiments that the improved machining surface obtained under about 80 degree, but coarse surface obtained over about 80 degree because of the existance of immproper shape of ball-end mill at the extreme portion.

  • PDF

Cutting Characteristics in Ball Endmilling (볼 엔드밀 가공시의 절삭특성에 관한 고찰)

  • Hong, Nam-Pyo;Kim, Byeong-Hee
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.11-20
    • /
    • 1997
  • This paper deals with the study on the cutting characteristics in ball endmilling process. First of all, the effects of the geometric cutting conditions such as the cutting speed, feedrates and the path interval on the surface integrity were evaluated by the analytical and the experimental approaches. Secondly, the cutting mechanism model was developed to predict the cutting force accurately. Prediction of cutting force make it possible to predict the shape error, estimate system stability and build the reliable adaptive control system. A large amount of experimental set are performed to show the validities of the proposed theories and to investigate the effect of cutting geometry such as rubbing effects, burr effects and etc.

  • PDF