• 제목/요약/키워드: Cutting Forces

검색결과 415건 처리시간 0.025초

Evaluation of rock cutting efficiency of the actuated undercutting mechanism

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • 제29권3호
    • /
    • pp.359-368
    • /
    • 2022
  • Undercutting using an actuated disc cutter (ADC) involves more complex cutting mechanism than traditional rock cutting does, requiring the application of various new cutting parameters, such as eccentricity, cutter inclination angle, and axis rotational speed. This study presents cutting-edge laboratory-scale testing equipment that allows performing ADC tests. ADC tests were carried out on a concrete block with a specified strength of 20 MPa, using a variety of cutting settings that included penetration depth (p), eccentricity (e), and linear velocity (v). ADC, unlike pick and disc cutting, has a non-linear cutting path with a dynamic cutting direction, requiring the development of a new method for predicting cutting force and specific energy. The influence of cutting parameters to the cutter forces were discussed. The ratio of eccentricity to the penetration depth (e/p) was proposed to evaluate the optimal cutting condition. Specific energy varies with e/p ratio, and exhibits optimum values in particular cases. In general, actuated undercutting may potentially give a more efficient cutting than conventional pick and disc cutting by demonstrating reasonably lower specific energy in a comparable cutting environment.

밀링가공에서의 커더 런 아웃량 검출에 관한 연구 (A Study on the Detection of Cutter Runout Magnitude in Milling)

  • 황준;정의식;이기용;신승춘;남궁석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.151-156
    • /
    • 1995
  • This paper presents a methodology for real-time detecting and identifying the runout geometry of an end mill. Cutter runout is a common but undesirable phenomenon in multi-tooth machining such as end-milling process because it introduces variable chip loading to insert which results in a accelerated tool wear,amplification of force variation and hence enlargement vibration amplitude. Form understanding of chip load change kinematics, the analytical sutting force model was formulated as the angular domain convolution of three dynamic cutting force component functions. By virtue of the convolution integration property, the frequency domain expression of the total cutting forces can be given as the algebraic multiplication of the Fourier transforms of the local cutting forces and the chip width density of the cutter. Experimental study are presented to validata the analytical model. This study provides the in-process monitoring and compensation of dynamic cutter runout to improve machining tolerance tolerance and surface quality for industriql application.

  • PDF

니켈계 합금의 볼엔드밀 가공에서 절삭 방향에 따른 영향 (Analysis of Cutter Orientation when Ball Nose End Milling Nickel Based Superalloys)

  • 이득우
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2496-2501
    • /
    • 2000
  • High speed ball end milling is attracting interest in the aerospace industry for the machining of complex 31) airfoil surfaces in nickel based superalloys, Experimental work is detailed on the effect of cutter orientation on tool life, cutting forces, chip formation, specific force and workpiece surface roughness, when high speed ball end milling nickel based supperalloy(lnconel 718). Dry cutting was performed using 8min diameter solid carbide cutters coated with either TiA1N or CrN for the workpiece mounted at an angle of 45˚ from the cutter axis. A horizontal downwards cutting orientation provided the best tool life with cut lengths~50% longer than for all other directions. Evaluation of cutting forces and associated spectrum analysis of results indicated that cutters employed in a horizontal downwards direction produced the least vibration.

황삭 가공을 위한 최적 직선 평행 공구경로 생성 (An Optimized Direction Parallel Tool Path Generation for Rough Machining)

  • 김현철
    • 대한기계학회논문집A
    • /
    • 제32권9호
    • /
    • pp.761-769
    • /
    • 2008
  • The majority of mechanical parts are manufactured by milling machines. Hence, geometrically efficient algorithms for tool path generation and physical considerations for better machining productivity with guarantee of machining safety are the most important issues in milling tasks. In this paper, an optimized path generation algorithm for direction parallel milling which is commonly used in the roughing stage is presented. First of all, a geometrically efficient tool path generation algorithm using an intersection points-graph is introduced. Although the direction parallel tool path obtained from geometric information have been successful to make desirable shape, it seldom consider physical process concerns like cutting forces and chatters. In order to cope with these problems, an optimized tool path, which maintains constant MRR in order to achieve constant cutting forces and to avoid chatter vibrations at all time, is introduced and the result is verified. Additional tool path segments are appended to the basic tool path by using a pixel based simulation technique. The algorithm has been implemented for two dimensional contiguous end milling operations, and cutting tests are conducted by measuring spindle current, which reflects machining situations, to verify the significance of the proposed method.

미세가공을 위한 마이크로 공구동력계 개발 (Development of the Micro Tool Dynamometer for Micro Machining)

  • 권동회;황인옥;강명창;김전하;김정석;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.217-218
    • /
    • 2006
  • This paper presents an investigation on the characteristics for new micro tool dynamometer by using the ultrahigh-speed air turbine spindle. Recently, the ultrahigh-speed micro flat endmilling has been investigated actively due to request of accuracy improvement and productivity of die and mould manufacturing. To perform efficient ultrahigh-speed micro flat endmilling, evaluation of ultrahigh-speed machinability must be studied preferentially and it can be identified by investigation of cutting force. The cutting forces in ultrahigh-speed micro flat endmilling can be measured by micro tool dynamometer. But general dynamometer has low natural frequency and so is improper for measuring very high frequency cutting forces in ultrahigh-speed micro flat endmilling. In this study, the micro tool dynamometer which has very high natural frequency is newly designed.

  • PDF

신경망과 절삭력을 이용한 공구이상상태감지에 관한 연구. (A Study on Cutting Toll Damage Detection using Neural Network and Cutting Force Signal)

  • 임근영;문상돈;김성일;김태영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.982-986
    • /
    • 1997
  • A method using cutting force signal and neural network for detection tool damage is proposed. Cutting force signal is gained by tool dynamometer and the signal is prepocessed to normalize. Cutting force signal is changed by tool state. When tool damage is occurred, cutting force signal goes up in comparison with that in normal state. However,the signal goes down in case of catastrophic fracture. These features are memorized in neural network through nomalizing couse. A new nomalizing method is introduced in this paper. Fist, cutting forces are sumed up except data smaller than threshold value, which is the cutting force during non-cutting action. After then, the average value is found by dividing by the number of data. With backpropagation training process, the neural network memorizes the feature difference of cutting force signal between with and without tool damage. As a result, the cutting force can be used in monitoring the condition of cutting tool and neural network can be used to classify the cutting force signal with and without tool damage.

  • PDF

취성재료의 가공시 절삭날이 표면거칠기에 미치는 영향 (The Effect of Cutting Edge on the Surface Roughness In Cutting Brittle Materials)

  • 김주현
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.53-61
    • /
    • 1996
  • A clear understanding of the surface formation mechanism due to cutting is very important to help produce a good quality surface. Much of the roughness along the length of a bar being cut in a lathe can be explained in terms of macroscopic tool shape and feed rate. However, the roughness along the direction of cutting requires a different explanation. The formation of surface roughness is a problem in flow and fracture of materials in the vicinity of the tool edge. On a microscopic scale the cutting edge is rounded because it is impossible to grind a perfectly sharp cutting edge. Even if a perfectly sharp cutting edge were obtained it would soon become dull as a result of rapid breakdown and wear of the cutting edge. A research project is proposed in which in the main object is to model the surface formation mechanism due to cutting. The tool was assumed to be dull, that is, its edge has a finite radius. In order to study the effect of the radius of cutting edge on the surface formation, tools having different cutting edges were used. For orthogonal cutting experiment, cast iron and glass were chosen as brittle materials. Plowing forces acting in the cutting edge were estimated and its effect on the surface roughness was studied by observing the machined surface using optical microscope.

  • PDF

Ti-6Al-4V 티타늄 합금나사의 절삭 특성 (Machining Characteristics of Ti-6Al-4V Thread)

  • 김형선;최종근;김동민;류민영
    • 한국생산제조학회지
    • /
    • 제18권5호
    • /
    • pp.514-520
    • /
    • 2009
  • Titanium is one of the most attractive materials due to their superior properties of high specific strength and excellent corrosion resistance. The applications in aerospace and medical industries demand machining process more frequently to obtain more precise products. Machining of titanium is faced with strong challenges such as increased component complexity i.e. airframe components manufacturing processes. The machining cost on titanium have traditionally demanded high cutting tool consumable cost and slow machining cycle times. Similarly, the high wear of the cutting tools restricts the cutting process capabilities. Titanium screws applied to fasten parts In the several corrosion environment. In the thread cutting of titanium alloys, the key point for successful work is to select proper cutting methods and tool materials. This study suggests a guidance fur selecting the cutting methods and the tool materials to improve thread quality and productivity. Some experiments investigate surface roughnesses, cutting forces and tool wear with change of various cutting parameters including tool materials, cutting methods, cutting speed. As the results, the P10 type insert tip was assured of the best for thread cutting of Ti-6Al-4V titanium alloy. Also the initial depth of infeed was desirable to use the value below 0.5mm as the uniform cutting area method is applied.

  • PDF