• 제목/요약/키워드: Cutting Force Prediction

검색결과 127건 처리시간 0.026초

일반적 상황에서 2차원 절삭력 추정을 위한 이송모터 전류의 거동분석 (Analysis of the Characteristics of the Feed motor Current for the Estimation of the Cutting Force in General Cutting Environment)

  • 정영훈;윤승현;조동우
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.93-100
    • /
    • 2002
  • The current from the feed motor of a machine tool contains substantial information about the machining state. There have been many researches that investigated the current as a measure for the cutting farces. However it has been reported that this indirect measurement of the cutting farces from the feed motor current is only feasible in low frequency. In this research, it was presented that the bandwidth of the current monitoring can be expanded to 130 Hz. And the unusual behavior of the current was examined in this bandwidth. The cross-feed directional cutting force influences the machined surface of the workpiece, which makes it necessary to estimate this force to control the roughness of the machined sulfate. The current exists in the stationary feed motor, and it can give the useful information on the quality of the machined surface. But the unpredictable behavior of the current prevents applying the current to prediction of the cutting state. Empirical approach was conducted to resolve the problem. As a result, the current was shown to be related to the accumulation of the accumulation of the infinitesimal rotation of the motor. rotation of the motor. Subsequently the relationship between the current and the cutting force was identified.

절삭력 신호를 이용한 정면 밀링에서 공구 파손량 예측 (Prediction of the Amount of Tool Fracture in Face Milling Using Cutting Force Signal)

  • 김기대;주종남
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.972-979
    • /
    • 2001
  • Tool fracture index(TFI) was developed in order not only to detect tool fracture but also to predict the amount of tool fracture in face milling. TFI is calculated by using peak-to-valley values of cutting force acting on teeth and their ratio between the adjacent teeth. When the tool fractures, a large value of TFI proportional to the amount of tool fracture was obtained periodically and decreased gradually. It was found that TFI is independent of cutter runout and it almost does not vary during transient cutting such as cutting condition change during machining. The threshold of tool fracture can be analytically determined by TFI developed in this paper, because the magnitude of TFI was shown to be dependent on the ratio of the amount of tool fracture to feed per tooth and immersion ratio. It was possible to predict the amount of tool fracture in experiments by using the proposed TFI.

웨이블렛 필터뱅크를 이용한 동적 엔드밀 절삭력 필터링 (Dynamic Filtering of End-milling Force Using Wavelet Filter Bank)

  • 조희근;진도훈;윤문철
    • 한국생산제조학회지
    • /
    • 제18권4호
    • /
    • pp.381-387
    • /
    • 2009
  • The end-milling force behaviour is very complex and it is related to a de-noising phenomenon, so it is very difficult to detect and diagnose this static cutting force phenomenon. This paper presents a new method of filtering of end-milling force in end-milling operation using filter bank technique, based on the wavelet transform. In this paper by comparing the history of end-milling force using wavelet filtering the fundamental end-milling property of the wavelet transform is well reviewed and analyzed. This result of wavelet transform using filter bank shows the possible static prediction of end-milling force with severe dynamic properties such as chatter in end-milling operation.

  • PDF

공구파손검출을 위한 시스템인식에 관한 연구 (A Study on the System Identification for Detection of Tool Breakage)

  • 사승윤
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.144-149
    • /
    • 2000
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There have been many studies to monitor and predict the system, but they have mainly focused upon measuring cutting force, and current of motor spindle, and upon using acoustic sensor, etc. In this study, time series sequence of cutting force was acquired by taking advantage of piezoelectric type tool dynamometer. Radial cutting force was obtained from it and was available for useful observation data. The parameter was estimated using PAA(parameter adaptation algorithm) from observation data. ARMA(auto regressive moving average) model was selected for system model and second order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter.

  • PDF

선삭가공에서 공구파손 검출 시스템 인식에 관한 연구 (A Study on the System Identification of Tool Breakage Detection in Turning)

  • 사승윤
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.40-45
    • /
    • 1999
  • The demands for robotic and automatic system are continually increasing in manufacturing fields. There have been many studies to monitor and predict the system, but they have mainly focused upon measuring cutting force, and current of motor spindle, and upon using acoustic sensor, etc.In this study, time series sequence of cutting force was acquired by taking advantage of piezoelectric type tool dynamometer. Radial cutting force was obtained from it and was available for useful observation data. The parameter was estimated using PAA (parameter adaptation algorithm) from observation data. ARMA(auto regressive moving average) model was selected for system model and second order was decided according to parameter estimation. Uncorrelation test was also carried out to verify convergence of parameter.

  • PDF

마이크로 채널의 가공성에 관한 연구 (A Study on the Machinability of Micro-Channel)

  • 홍민성;김종민
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.51-57
    • /
    • 2008
  • Recently, the manufacturer of microscopic structures along with the development of technology to produce electronics, communication and semiconductors allows various components to be smaller in size, with higher precision. Therefore, preoccupancy of micro/nano-level machining technology in order to product micro/nano-components and parts is key issue in the field of manufacturing. In this study, machinability of micro machining was studied through the machining of aluminum, brass and steel workpiece. Inspection of the cutting force variation patterns of large numbers of micro machining indicated that characteristics of the workpiece. Surface roughness prediction methods were developed by considering the variation of the static part of the feed direction cutting force. The accuracy of the proposed approaches were tested with experimental data and the agreement between the predictions and actual observations are addressed.

프랙탈 보간에 의한 엔드밀링 절삭력 예측 (End-milling Force Estimation by Fractal Interpolation)

  • 정진석;진도훈;윤문철
    • 한국기계가공학회지
    • /
    • 제5권1호
    • /
    • pp.7-12
    • /
    • 2006
  • Recently, the fractal interpolation methods have been widely introduced and used to estimate and analyze various theoretical and experimental data. Because of the chaotic behaviors of dynamic cutting force data, some method for end-milling force analysis must be used. The fractal analysis used in this paper is fractal linear interpolation and fractal dimension. Also, several methods for computing fractal dimensions have been used in which the fractal dimension of the typical dynamic end-milling force was calculated according to number of data points that are generally lower than 200 data points sampled. This fractal analysis shows a possible prediction of end-milling force that has some dynamic chatter property or stationary property in endmilling operation.

  • PDF

이동열원을 고려한 레이저 보조가공에서 절삭공구와 홀더의 변형 예측에 관한 연구 (A Study on the Cutting Tool and Holder Deformation Prediction undergoing Laser-assisted Machining with Moving Heat Sources)

  • 정재원;이춘만
    • 한국정밀공학회지
    • /
    • 제26권9호
    • /
    • pp.127-134
    • /
    • 2009
  • Laser-assisted machining uses primarily laser power to heat the local area before the material is removed. It not only efficiently reduces the cutting force during the manufacturing process but also improves the machining characteristics and accuracy with regard to difficult-to-machine materials. The prediction of relative deformations between the cutting tool and workpiece is important to improve the accuracy of machined components. This paper presents the deformation errors caused for a cylindrical workpiece by thermal effects in the laser-assisted machine tool using finite element method. The results can be used to increase the cutting accuracy by compensating thermal distortion prior to laser-assisted machining.

정밀 선삭가공에서의 표먼거칠기곡선 예측 (Prediction the surface profile in the single point diamond turning)

  • 윤영식;이상조
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.189-198
    • /
    • 1994
  • The achievable machining accuracy depends upon the level of the micro-engineering, and the today's accuracy targets are dimensional tolerances in the order of 10nm and surface roughness in the order of 1nm. Such requirements cannot be satisfied by the conventional machining processes. Single point diamond turning is the one of new techniques which can produce the parts with such accuracy limits. The aims of this thesis are to get a better understanding of the complex cutting process with a diamond tool and, consequently, to develope a predicting model of a turned surface profile. In order to predict the turned surface profile, a numerical model has been developed. By means of this model, the influence of the operational settings-the material properties of the workpiece, the geometry of the cutting tool and the dynamic behaviour of the lathe-and their influences via the cutting forces upon the surface roughness have been estimated.

  • PDF