• 제목/요약/키워드: Cutting Force Modeling

검색결과 55건 처리시간 0.029초

실가공형 CAM 시스템의 구현을 위한 가공면 예측 및 실험검증 (Machined Surface Prediction and Experimental Verification for Virtual Machining CAM System)

  • 정대혁;서석환
    • 한국CDE학회논문집
    • /
    • 제4권3호
    • /
    • pp.247-258
    • /
    • 1999
  • With the contemporary CAD/CAM system, where the tool path is generated and verified purely based on the geometric operation, geometric accuracy of the machined surface cannot be guaranteed dut to the cutting mechanics, meaning that the cutting mechanics should be incorporated in some fashion. In this paper, we incorporate the instantaneous cutting force and the tool deflection phenomena in predicting the machined surface for the finish-cut and milling operation. For the given NC dat including cutting conditions, the developed algorithm computes cutting force and deflection amount along the tool trajectory, and outputs the 3D graphic model of the machined surface together with error analysis. The validity and accuracy of the presented method has been tested by the actual cutting experiments. Experimental results and accuracy enhancement method together with implementing architecture of the VMCS (Virtual Machining CAM System) are discussed in the paper.

  • PDF

이송 및 주축속도 가변속에 의한 볼 엔드밀 절삭공정의 절삭력 추적제어 (Cutting Force Control by Variable Feed and Spindle Speed in Ball-end Milling Process)

  • 이천환;이승욱;이건복
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.73-80
    • /
    • 1993
  • There and two important variables in machining process control, which are feed and cutting speed. It is possible to improve the machining accuracy and the productivity by maintaining the optimal feed and cutting speed. In this work, a controller is designed to achieve on-line cutting force control based on the modeling of cutting process dynamics established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and the second is spindle speed control under the constant feed. Finally, both are proved to work properly through simulation and experimentation.

  • PDF

엔드밀 가공에서의 공구 변형에 대한 유한요소해석 (A study on Finite Element Analysis of Tool Deformation in End Milling)

  • 김국원;정성찬
    • 한국산학기술학회논문지
    • /
    • 제6권1호
    • /
    • pp.83-86
    • /
    • 2005
  • 본 연구에서는 절삭 가공시 공구가 받는 절삭력과 칩-공구 사이에서 발생하는 절삭온도에 의한 공구의 변형을 예측하였다. 3D CAD를 이용하여 공구를 모델링 하였으며 절삭력과 절삭온도를 하중조건으로 부여하여 유한요소해석을 수행하였다. 하중조건으로 사용한 절삭력과 절삭온도는 절삭이론을 이용한 절삭력 모델을 사용하여 예측하였으며 실험을 통해 모델의 타당성을 검증하였다. 그러므로 본 연구는 절삭조건과 재료 물성치 그리고 공구 형상만을 알면 이에 따른 절삭력 성분 및 절삭온도 둥을 얻을 수 있고, 이를 이용하여 절삭 가공시 발생하는 공구의 변형을 예측할 수 있다.

  • PDF

시계열 모델과 상관차원 해석을 통한 공구수명의 감시 (Monitoring of Tool Life through AR Model and Correlation Dimension Analysis)

  • 김정석;이득우;강명창;최성필
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.189-198
    • /
    • 1998
  • Recently, monitoring of tool life is a matter of common interesting because tool life affects precision, productivity and cost in machining process. Especially flank wear has a direct effect on cutting mechanism, so the various pattern of cutting force is obtained experimentally according to variation of wear condition. By investigating cutting force signal, AR(Autoregressive) modeling and correlation dimension analysis is conducted in turning operation. In this modeling and analysis, we extract features through 6th AR model, correlation integral and normalized correlation integral. After the back-propagation model of the neural network is utilized to monitor tool life according to flank wear. As a result. a very reliable classification of tool life was obtained.

  • PDF

Side Milling Cutter 를 이용한 Worm Screw 가공시 절삭 모델링을 통한 Cusp 예측 (A study on the forecast of Cusp by Cutting Modeling in Worm Screw Process by Side Milling Cutter)

  • 김창현;권태웅;강동배;이민환;안중환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1893-1896
    • /
    • 2005
  • Cutting force and face roughness have the largest influence on precision of a structure or processing efficiency in cutting processing. Thus cutting force model and face roughness model are necessary for this interpretation. In this paper, tool path model and face roughness model which consider the blade number of a tool and a revolution speed of tool and workpiece in the worm processing using side milling cutter are presented. This model was used to forcast the cusp. Experimental results show that the predicted cusp coincides with experimental one.

  • PDF

신경회로망을 이용한 엔드밀 가공의 비절삭력계수 모델링 (Specific Cutting Force Coefficients Modeling of End Milling by Using Neural Network)

  • 이신영;이장무
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.979-987
    • /
    • 1999
  • In a high precision vertical machining center, the estimation of cutting forces is important for many reasons such as prediction of chatter vibration, surface roughness and so on, and cutting forces are difficult to predict because they are very complex and time variant. In order to predict the cutting forces of end-milling process for various cutting conditions, a mathematical model is important and this model is based on chip load, cutting geometry, and the relationship between cutting forces and chip loads. Specific cutting force coefficients of the model have been obtained as interpolation function types by averaging farces of cutting tests. In this paper, the coefficients are obtained by neural network and the results of the conventional method and those of the proposed method are compared. The results show that the neural network method gives more correct values than the function type and that in teaming stage as the omitted numbers of experimental data increases the average errors increase.

밀링머신의 절삭력 제어를 통한 표면굴곡도 향상에 관한 연구 (A Study on the Improvement of Surface Waviness by Cutting Force Control)

  • 오준호;정충영
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.206-214
    • /
    • 1988
  • 본 논문에서는 엔드 밀링에서 황삭 작업시 비교적 절삭 모델의 정립이 용이한 하향 밀링(down milling)의 경우를 대상으로, 가공면 오차의 주 원인인 공구와 공작물 사이의 처짐과 절삭력의 특정한 동적관계를 유도하고, 그 절삭력을 일정하게 유지하도록 공구의 이송속도를 온라인으로 제어하였다.

볼엔드밀 절삭공정의 절삭력 디지털 제어

  • 이천환;이건복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.198-203
    • /
    • 1992
  • There are two important variables in machining process control, which are feed and cutting speed. It is possible to improve the machining accuracy and the productivity by maintaining the optimal feed and cutting speed. IN this work, a controller is designed to achieve on-line cutting force control based on the modeling of cutting process dynamics established through step response test. Two schemes are proposed and implemented. The first is feed control under the constant spindle speed and the second is spindle speed control under the constant feed. Finally, both are proved to work properly through simulation and experimentation.

발전소 배관지지용 유압완충기의 동특성 모델링 해석 (Modeling and Analysis of the Dynamic Characteristics of Pipe Supporting Hydraulic Snubber in Electric Power Plant)

  • 이재천;황태영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.87-91
    • /
    • 1997
  • This paper presents the modeling and analysis of dynamic characteristics of hydraulic snubber in electric power plant. The nonlinear state equations of 9th order to describe the dynamics of the snubber was established by Sirnulink. The simulation results show that the hydraulic snubber reacts as like the conventional shock absolvers to the high pulse shock load. The snubber also shows the peculiar characteristics to the small step load, which are temporary locking displacements of control valves and same steady-state pressures of all internal chambers in the snubber.

  • PDF

정면 밀링 가공에서의 비절삭 저항 모델링 및 절삭력 예측 (Modeling of the Specific Cutting Pressure and Prediction of the Cutting Forces in Face Milling)

  • 김국원;주정훈;이우영;최성주
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.116-122
    • /
    • 2008
  • In order to establish automation or optimization of the machining process, predictions of the forces in machining are often needed. A new model fur farces in milling with the experimental model based on the specific cutting pressure and the Oxley's predictive machining theory has been developed and is presented in this paper. The specific cutting pressure is calculated according to the definition of the 3 dimensional cutting forces suggested by Oxley and some preliminary milling experiments. Using the model, the average cutting forces and force variation against cutter rotation in milling can be predicted. Milling experimental tests are conducted to verify the model and the predictive results agree well with the experimental results.