• Title/Summary/Keyword: Cutting Edge

Search Result 754, Processing Time 0.024 seconds

Analysis of Chip-Tool Friction and Shear Characteristics in 3-D Cutting Process (3차원 절삭시 칩-공구 마찰 및 전단 특성 해석)

  • Lee, Young-Moon;Choi, Won-Sik;Song, Tae-Seong;Park, Tae-Joon;Jang, Eun-Sil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.190-196
    • /
    • 1999
  • In this study, a procedure for analyzing chip-tool friction and shear processes in 3-D cutting with a single point tool has been established. The edge of a single point tool including circular nose is modified to the equivalent straight edge, then 3-D cutting with a single point tool is reduced to equivalent oblique cutting. Transforming the conventional coordinate systems and using the measured three component of cutting forces, force components on the rake face and the shear plane of the equivalent oblique cutting system can be obtained. And it can be possible to assess the chip-tool friction and shear characteristics in 3-D cutting with a single point tool.

  • PDF

Wear of Partially Coated Tool in Interrupted Cutting (부분 피복된 HSS 공구의 단속절삭시의 마멸)

  • 김동욱;조용주;지용권;류병진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.67-72
    • /
    • 1994
  • Tool test was conducted to investigate the were process of only flank face TiN coated HSS tool in interrupted cutting for variuos cutting speeds and feed rates. Flank wear was caused by microchipping at the cutting edge. At high cutting speed, the which was formed as a result of diffusion and abrasion lowered cutting edge and influenced flank were. Flank wear due to chipping was little influenced by cutting speed.

  • PDF

Effects of Cutting Angle on Kerf width and Edge Shape in the Hotwire Cutting of EPS Foam for the Case of Single-Sloped Cutting for VLM-s Process (VLM-s 공정을 위한 EPS 폼의 단순 경사 열선 절단시 절단 경사각이 절단폭과 모서리 형상에 미치는 영향)

  • 안동규;양동열
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.525-533
    • /
    • 2003
  • The dimensional accuracy and global roughness between successive layers of VLM-s, which is a new rapid prototyping process using hotwire cutter and EPS foam, depend significantly on the operating parameters of hotwire cutter. In the present study, the effect of cutting angle on the kerf width and edge shape in hotwire cutting of EPS foam for the case of single-sloped cutting with one cutting angle was investigated. Through single-sloped cutting tests, the modified relationship between kerf width and effective heat input, considering the effect of the cutting angle, and the relationship between the melted area and the cutting angle were obtained. In order to investigate the effect of cutting angles on the thermal field in EPS foam, transient heat transfer analyses using single-sloped volumetric heat flux model and locally-conformed mesh were performed. Through the comparison between experimental and numerical results, it was shown that the proposed analysis model is needed to estimate the three-dimensional temperature distribution of the EPS foam for the case of single-sloped hotwire cutting.

Built-Up Edge Analysis of Orthogonal Cutting By Visco-Plastic Finite Element Method (점소성 유한요소법에 의한 이차원 절삭의 구성인선 해석)

  • 김동식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.60-63
    • /
    • 1995
  • The behavior of the work materials in the chip-tool interface in extremely high strain rates and temperatures is more that of viscous liquids than that of normal solid metals. In these circumstances the principles of fluid mechanics can be invoked to describe the metal flow in the neighborhood of the cutting edge. In the present paper an Eulerian finite element model is presented that simulates metal flow in the vicinity of the cutting edge when machining a low carbon steel with carbide cutting tool. The work material is assumed to obey visco-plastic (Bingham solid) constitutive law and Von Mises criterion. Heat generation is included in the model, assuming adiabatic conditions within each element. the mechanical and thermal properties of the work material are accepted to vary with the temperature. The model is based on the virtual work-stream function formulation, emphasis is given on analyzing the formation of the stagnant metal zone ahead of the cutting edge. The model predicts flow field characteristics such as material velocity effective stress and strain-rate distributions as well as built-up layer configuration

  • PDF

A Study on the Flexible Cutting Force Model in the Ball End Milling Process (볼 엔드밀 가공의 유연 절삭력 모델에 관한 연구)

  • 최종근;강윤구;이재종
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.44-52
    • /
    • 2003
  • This research suggests a cutting force model for the ball end milling processes. This model includes the effect of tool run out and tool deflection. In the proposed model, the flutes of ball end mills are considered as series of infinitesimal elements and each cutting edge is assumed to be straight for the analysis of the oblique cutting process, in which the small cutting edge element has been analyzed as an orthogonal cutting process n the plane including the cutting velocity and the chip-flow vector. Therefor, the cutting forces can be calculated through the model using the orthogonal cutting data obtained from the orthogonal cutting test. In order to enhance the performance of the model, the flutes of ball end mill are defined to keep geometric consistency at the peak of the ball part and the junction with the end mill part. The divided infinitesimal cutting edges are regulated to be even lengths. Some experiments show the validity of the developed model in the various cutting coalitions.

Machinability evaluation according to variation of tool shape in high speed machining (고속가공에서 공구형상 변화에 따른 가공성평가)

  • 하동근;강명창;김정석;김광호;강호연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.346-351
    • /
    • 2001
  • The technique of high speed machining is widely studied in machining field. Because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool for high speed machining is not close behind that of machining tool. So in this study, we made 4 types flat end mill for obtaining data according to tool shape. Especially, we concentrated in helix angle and number of cutting edge. First we confirmed cutting condition by several experiments and measuring cutting force, tool life, tool wear and chip shape according to cutting length. In results, we acquired the fact that 45 degree helix angle and six cutting edge tool is suitable for high speed machining.

  • PDF

A Study on Critical Depth of Cuts in Micro Grooving

  • Son, Seong-Min;Lim, Han-Seok;Paik, In-Hwan;Ahn, Jung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.239-245
    • /
    • 2003
  • Ultra precision diamond cutting is a very efficient manufacturing method for optical parts such as HOE, Fresnel lenses, diffraction lenses, and others. During micro cutting, the rake angle is likely to become negative because the tool edge radius is considerably large compared to the sub-micrometer-order depth of cut. Depending on the ratio of the tool edge radius to the depth of cut, different micro-cutting mechanism modes appear. Therefore, the tool edge sharpness is the most important factor which affects the qualities of machined parts. That is why diamond, especially monocrystal diamond which has the sharpest edge among all other materials, is widely used in micro-cutting. The majar issue is regarding the minimum (critical) depth of cut needed to obtain continuous chips during the cutting process. In this paper, the micro machinability near the critical depth of cut is investigated in micro grooving with a diamond tool. The experimental results show the characteristics of micro-cutting in terms of cutting force ratio (Fx/Fy), chip shape, surface roughness, and surface hardening nea. the critical depth of cut.

Development of the Altari Radish Pre-Processing System for Kimch Production (I) - Leaf and root tail cutting equipment - (김치생산용 알타리무 전처리 가공시스템 개발(I) - 무청·뿌리끝부 절단장치 -)

  • Min Y.B.;Kim S.T.;Kang D.H.;Chung T.S.;La W.J.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.451-456
    • /
    • 2004
  • To establish a Altari radish pre-processing system far kimchi, the leaves and root tail of the Altari radish cutting de-vices were developed. The cutting resistances depend on the edge angles, oblique angles and cutting speeds were measured and analyzed. The experiments were performed to reveal the optimal conditions that showed the minimum cutting resistances acting on the materials. As the results, the optimum conditions that acting on the leaves were at edge angle $25^{\circ}$, oblique angle $40^{\circ}$ and cutting speed 0.5 m/s, and those acting on the root tails were at edge angle $20^{\circ}$, oblique angle $30^{\circ}$ and cutting speed 0.5 m/s, respectively. Considered a safety conception, the oblique angle of the leaves cutting device was adjusted as $20^{\circ}$, and then the cutting efficiencies of the both devices at these conditions were showed perfect performances.

A Study on The Surface Roughness by Ploughing Mechanism in Turning Process (선반작업에서 Ploughing Mechanism을 고려한 표면 거칠기에 관한 연구)

  • 홍민성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.251-256
    • /
    • 1999
  • "Ploughing" on the flank face of the tool in the metal cutting process is due to the tool in the metal cutting process is due to the finite edge radius of the tool and due to the development of flank wear. Because of the high stresses near the cutting edge, elastic-plastic deformation would be caused between the tool and the machined surface over a small area of the tool flank. The deformation would affect the roughness of the machined surface. Recently, some attempts have been made to predict the surface roughness, but elastic-plastic effect due to ploughing in the cutting process has not been considered. The research has analyzed mechanism of the ploughing of the cutting process using contact mechanics. Tool and workpiece material properties have been taken into account in the prediction of the surface roughness. The surface roughness has been simulated by the surface-shaping system. The results between experiment and simulation have been compared and analyzed. analyzed.

  • PDF

Analysis of Cutting Edge Geometry Effect on Surface Roughness in Ball-end Milling Using the Taguchi Method (다구찌 방법을 통한 볼 엔드밀 절삭날 형상이 가공면 거칠기에 미치는 영향 분석)

  • Cho, Chul Yong;Ryu, Shi Hyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.569-575
    • /
    • 2014
  • In this study, the effect of cutting edge geometry, such as helix and rake angles, on surface roughness in ball-end milling is investigated by using the Taguchi method. A set of experiments adopting the $L_{27}(3^{13})$ design with an orthogonal array are conducted with special WC ball-end mills having different helix and rake angles. Analysis of variance (ANOVA) is performed to analyze the effects of tool geometry and machining parameters, such as cutting speed, feed per tooth, and depth of cut, on surface roughness. The ANOVA results reveal that helix and rake angles are critical factors affecting surface roughness; the interaction of helix angle and cutting speed is also important. This research can contribute to novel cutting edge designs of ball-end mills and optimization of cutting parameters.