• Title/Summary/Keyword: Cutting Direction

Search Result 335, Processing Time 0.028 seconds

평면 엔드밀의 최적 가공조건을 위한 실험계획법의 적용 (Application of Design of Experiment Optimum Working Condition in Flat End-Milling)

  • 이상재;배효준;서영백;박흥식;전태옥
    • 한국기계가공학회지
    • /
    • 제2권3호
    • /
    • pp.20-25
    • /
    • 2003
  • The End-milling has been widely used in the industrial world because it is effective to cutting working with various shape. Recently the end-milling is demanded the high-precise technique with good surface roughness and rapid manufacturing time for precision machine and electronic elements. The cutting working of end-milling such as, cutting direction, revolution of spindle, feed rate and depth of cut have an effect on optimum surface roughness. This study was carried out to decide the working condition for optimum surface roughness and rapid manufacturing time by design of experiment and ANOVA. From the results of this study, the optimum working condition for end milling is upward cutting in cutting direction, 600rpm in revolution of spindle, 240mm/mm in feed rate, 2mm in axial depth of cut and 0 25mm in radial depth of cut. The design of experiment has become an useful method to select optimum working condition mend-milling.

  • PDF

WS2 윤활제를 첨가한 마이크로 다이아몬드 블레이드의 절삭성능과 기계적 특성 (Cutting Efficiency and Mechanical Characteristics of Diamond Micro-blades Containing WS2 Lubricant)

  • 김송희;장재철
    • 한국표면공학회지
    • /
    • 제45권1호
    • /
    • pp.37-42
    • /
    • 2012
  • $WS_2$ powder was added to the Cu/Sn bond metal of diamond micro-blades for machining of semi-conductor and IC chips to improve cutting efficiency. The effect of $WS_2$ additive on cutting efficiency was investigated and compared with the micro-blades with $MoS_2$ developed in previous research. Flexural strength, frictional coefficient, and wear resistance of blades decreased with $WS_2$ but wear depth increased. It was found that the blades including $WS_2$ consumed less momentary energy than the blades containing $MoS_2$ during dicing test. Micro-blades containing $WS_2$ exhibited lower flexural strength than the blades with $MoS_2$ resulting from higher amount of sintering defects relevant to the less effectiveness of $WS_2$ on fluidity. The effect of $WS_2$ and $MoS_2$ on fluidity during sintering was analyzed in terms of mismatching degree between the longitudinal direction of lubricant particles and the perpendicular direction to the compact loading. The blade with 8.1 vol.% of $WS_2$ showed the best cutting efficiency.

취성재료의 가공시 절삭날이 표면거칠기에 미치는 영향 (The Effect of Cutting Edge on the Surface Roughness In Cutting Brittle Materials)

  • 김주현
    • 한국정밀공학회지
    • /
    • 제13권1호
    • /
    • pp.53-61
    • /
    • 1996
  • A clear understanding of the surface formation mechanism due to cutting is very important to help produce a good quality surface. Much of the roughness along the length of a bar being cut in a lathe can be explained in terms of macroscopic tool shape and feed rate. However, the roughness along the direction of cutting requires a different explanation. The formation of surface roughness is a problem in flow and fracture of materials in the vicinity of the tool edge. On a microscopic scale the cutting edge is rounded because it is impossible to grind a perfectly sharp cutting edge. Even if a perfectly sharp cutting edge were obtained it would soon become dull as a result of rapid breakdown and wear of the cutting edge. A research project is proposed in which in the main object is to model the surface formation mechanism due to cutting. The tool was assumed to be dull, that is, its edge has a finite radius. In order to study the effect of the radius of cutting edge on the surface formation, tools having different cutting edges were used. For orthogonal cutting experiment, cast iron and glass were chosen as brittle materials. Plowing forces acting in the cutting edge were estimated and its effect on the surface roughness was studied by observing the machined surface using optical microscope.

  • PDF

The investigation of rock cutting simulation based on discrete element method

  • Zhu, Xiaohua;Liu, Weiji;Lv, Yanxin
    • Geomechanics and Engineering
    • /
    • 제13권6호
    • /
    • pp.977-995
    • /
    • 2017
  • It is well accepted that rock failure mechanism influence the cutting efficiency and determination of optimum cutting parameters. In this paper, an attempt was made to research the factors that affect the failure mechanism based on discrete element method (DEM). The influences of cutting depth, hydrostatic pressure, cutting velocity, back rake angle and joint set on failure mechanism in rock-cutting are researched by PFC2D. The results show that: the ductile failure occurs at shallow cutting depths, the brittle failure occurs as the depth of cut increases beyond a threshold value. The mean cutting forces have a linear related to the cutting depth if the cutting action is dominated by the ductile mode, however, the mean cutting forces are deviate from the linear relationship while the cutting action is dominated by the brittle mode. The failure mechanism changes from brittle mode with larger chips under atmospheric conditions, to ductile mode with crushed chips under hydrostatic conditions. As the cutting velocity increases, a grow number of micro-cracks are initiated around the cutter and the volume of the chipped fragmentation is decreasing correspondingly. The crack initiates and propagates parallel to the free surface with a smaller rake angle, but with the rake angle increases, the direction of crack initiation and propagation is changed to towards the intact rock. The existence of joint set have significant influence on crack initiation and propagation, it makes the crack prone to propagate along the joint.

레이저변수(變數)와 피삭재조건(被削材條件)이 목재(木材) 및 목질(木質)보드의 절삭특성(切削特性)에 미치는 영향(影響)(I) - 절삭(切削)깊이와 절삭폭(切削幅) - (Effects of Laser Parameters and Workpiece Conditions on Cutting Characteristics of Solid Wood and Wood-based Panel(I) - Cutting Depths and Kerf Widths -)

  • 심재현;정희석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권4호
    • /
    • pp.75-91
    • /
    • 1997
  • Laser cutting tests were conducted to investigate the laser cutting characteristics of solid woods such as 25mm-thick white oak(Quercus acutissima) and maple(Acer mono), and wood-based panels such as 15mm-thick medium density fiberboard and particleboard. Test variables were laser power, cutting speed, grain direction, and moisture content. Cutting depths, kerf widths and the maximum cutting speed were measured. Cutting depths were increased as focus of laser beam was moving from above the workpiece to on the surface of workpiece, and also to below the workpiece. Kerf widths were decreased as focus of laser beam was moving from above the workpiece to on the surface of workpiece, but were increased as focus of laser beam was moving from on the surface of workpiece to below the workpiece. Minimum kerf widths were obtained when focus of laser beam was positioned on the surface of workpiece. Cutting depths and kerf widths were decreased with increase in moisture content, and cutting depths and kerf widths of more dense white oak were smaller than those of maple. And also cutting depths and kerf widths of particleboard were smaller than those of medium density fiberboard.

  • PDF

엔드밀링 공정에 의하여 생성된 측벽의 기하학적 특성과 평엔드밀 형상 사이의 관계 (Relationship Between Flat End-mill Shape and Geometrical Characteristics in Side Walls Generated by End-milling Process)

  • 김강
    • 대한기계학회논문집A
    • /
    • 제39권1호
    • /
    • pp.95-103
    • /
    • 2015
  • 평엔드밀 가공된 측벽 형상에 공구 형상이 미치는 영향에 대하여 알아보고자 한다. 이를 위하여, 공구 형상을 비틀림각, 절삭날 수, 직경으로 구분하여 특징지었으며, 가공면의 기하학적 특성은 서로 직교하는 이송방향 형상과 축방향 형상으로 나누어 고려하였다. 각 방향의 형상 특성은 공구와 공작물 및 절삭날과 공작물의 간섭 영역으로부터 계산한 순간 절삭면적을 바탕으로 추정하였으며, 추정의 타당성을 가공면 형상 및 배분력 측정을 통하여 검증하였다. 연구 결과, 이송방향 형상의 결함은 공구 퇴출 및 공구 경로의 곡률반경이 변하는 구간에서 나타나며, 이외의 구간에서는 축방향 형상의 결함이 주를 이루는 것이 확인되었다. 측벽의 가공정밀도를 향상시키기 위해서는, 상대적으로 직경이 작고, 비틀림각이 큰 절삭날을 많이 갖는 엔드밀을 사용하여 상향절삭 하는 것이 바람직할 것으로 추천된다.

레저보트 목형가공 자동화에 관한 연구 (Development of the Automatic Machining Technology for Boat's Wooden Patterns)

  • 김성일
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.174-179
    • /
    • 2007
  • The cutting automation of boat's wooden pattern is strongly required to improve the productivity and quality of boats in leisure boat industry. This paper is concerned with the development of wooden pattern machining technology by the machining center. The leisure boat is designed with a 3 dimensional design s/w. The NC cutting data are generated in a CAM s/w and are verified using verification s/w. The cutting forces are monitored to analyse the cutting process. The surface characteristics of machined surface are investigated at various cutting conditions such as spindle speed, feed speed, the cutting direction of wood, and wood material.

Plunge Milling Force Model using Instantaneous Cutting Force Coefficients

  • Ko Jeong-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권3호
    • /
    • pp.8-13
    • /
    • 2006
  • Plunge milling process is used for machining hole and is widely used in aerospace, automobile, and die/mold industries. The cutter is fed in the direction of spindle axis which has the highest structural rigidity. The kinematics of plunge milling differs from the traditional turning and milling in aspect of tool engagement and chip generation. This paper proposes the mechanistic cutting force model for plunge milling. Uncut chip thickness is calculated using the present cutter edge position and the previous cutter edge position. Instantaneous cutting force coefficients, which depend only on instantaneous uncut chip thickness, are derived based on the mechanistic approach. The developed cutting force model is verified through comparison of the predicted and the measured cutting forces.

볼 엔드밀 가공시 공구경로에 따른 절삭특성에 관한 연구 (A Study on Cutting Characteristics According to Cutting Direction in Ball-End Milling)

  • 조병무;이동주
    • 한국공작기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.191-197
    • /
    • 2007
  • Inclined surface milling in the mould and die industries is one of the most commonly needed cutting process. For the variety and complexity of cutting characteristics in various cutting condition, it is difficult to select a optimal tool path orientation. Especially, when the cutting process becomes unstable, it induces self-exited vibrations, a frequent cause of poor tool life, rough surface finish, damage to the workpiece and the machine tool itself, and excessive down time. The comparative results through FFT analysis in this study provide a guideline for the selection tool path orientation.