• Title/Summary/Keyword: Cutting Characteristics

Search Result 1,506, Processing Time 0.029 seconds

Machining Characteristics of Cemented Carbides in Micro Cutting within SEM

  • Heo, Sung-Jung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.35-42
    • /
    • 2004
  • This research describes that the cutting characteristics and tool wear behavior in the micro cutting of three kinds of wear resistant cemented carbides (WC-Co; V40, V50 and V60) using PCD (Poly Crystalline Diamond) and PCBN (Poly crystalline Cubic Boron Nitride) cutting tools by use of the SEM (Scanning Electron Microscope) direct observation method. The purpose of this research is to present reasonable cutting conditions from the viewpoint of high efficient cutting refer to a precise finished surface and tool wear. Summary of the results is as follows: (1) The cutting forces tend to increase as the increase of the weight percentage of WC particles, and the thrust forces was larger than the principal forces in the cutting of WC-Co. These phenomena were different from the ordinary cutting such as cutting of steel or cast iron. (2) The cutting speed hardly influenced the thrust force, because of the frictional force between the cutting tool edge and small WC particles at low cutting speed region such as 2$\mu\textrm{m}$/s. It seemed that the thrust cutting force occurred by the contact between the flank face and work material near the cutting edge. (3) The wear mechanism for PCD tools is abrasion by hard WC particles of the work materials, which leads diamond grain to be detached from the bond. (4) From the SEM direct observation in cutting the WC-Co, it seems that WC particles are broken and come into contact with the tool edge directly. This causes tool wear, resulting in severe tool damage. (5) In the orthogonal micro cutting of WC-Co, the tool wear in the flank face was formed bigger than that in the rake face on orthogonal micro cutting. And the machining surface integrity on the side of the cutting tool with a negative rake angle was better than that with a positive one, as well as burr in the case of using the cutting tool with a negative rake angle was formed very little compared to the that with a positive one.

A Study on the Characteristics Analysis of Cutting Fluid Aerosol Using Dual-PDA System - for Turning Process (Dual-PDA를 이용한 절삭유 에어로졸 특성분석에 관한 연구(I) -선삭공정을 중심으로)

  • Jeong, J.Y.;Hwang, D.C.;Hong, G.B.;Woo, C.K.;Hwang, J.
    • Journal of ILASS-Korea
    • /
    • v.10 no.2
    • /
    • pp.10-17
    • /
    • 2005
  • The proposed research has been performed to know the characteristics of cutting fluid aerosol formation using Dual-PDA system in machining process. The cutting fluid aerosol size and concentration is common attributes that quantify the environmental intrusiveness or air quality contamination. The atomized cutting fluid aerosols can be affected to human health risk such as lung cancer and skin irritations. Even though cutting fluid can be improved the machining quality and productivity in a carefully. its use must be controlled and optimized carefully. This experimental works using Dual-PDA were performed to analyze the cutting fluid aerosol behaviors and characteristics in turning process using precise aerosol particle measuring system. The obtained experimental results profovide basic knowledge to develop the environmentally conscious machining process. This results cail be provided as a basis to estimate and control the hazardous cutting fluid aerosol in machining process.

  • PDF

Effects of Cutting Frequency and Height on Agronomic Characteristics and Yield Performance of Sorghym-Sudangrass Hybrid (예취횟수와 예취높이가 수수-수단그라스 교잡종의 제형질 발현과 수량에 미치는 영향)

  • 박병훈;강정훈;유시용
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.1
    • /
    • pp.26-32
    • /
    • 1988
  • This study was conducted to determine the effects of cutting frequency and cutting height on agronomic characteristics and yield performance of sorghum-sudangrass hybrid, cv. Pioneer 855 F on the experimental field of Livestock Experiment Station, Suweon. The results are summarized as follows: 1. The relative contribution of leaf component to total yield was higher when the plants were cut frequently rather than when defoliated only a few times, and tend to be higher with high cutting. 2. Leaf Area Index (LAI) was the highest at the primary growth of two cutting times scheme and the first regrowth for three or four cutting times a year, but LAI, in general, was not related to cutting height. 3. Crop Growth Rate was the heighest at the first regrowth-plants grown in summer, and it was also related to the amount of stubble left at the previous cut. 4. Dead stubbles were not occurred when plants were cut before heading, but those were accompanied by the frequent and low cutting. 5. Total fresh fodder and dry matter yield were the highest at two times cut a year, and decreased with frequent cutting. The optimum cutting height at two times cut was ca. lOCm height stubble from the ground level, but yield increased with higher level cutting at the three or four times cut a year.

  • PDF

The Characteristics of Cutting Fluid Atomization in According to Cutting Fluid Application Method (절삭유 공급방식에 따른 절삭유 분산특성에 관한 연구)

  • Hwang, Joon;Chung, Eui-Sik
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.858-861
    • /
    • 2000
  • This paper presents the characteristics of cutting fluid atomization due to its application method. In this study three different application methods; nozzle, jet, mist type is adopted for evaluating the cutting fluid's effect in terms of machinability and environmental consciousness. Cutting fluids are widely used to cool and lubricate the cutting zone in machining process. Cutting fluids mist via atomization in spin-off process can be affected to health risk. To satisfy the increasing concern of health and environment problem and keep the machinability or productivity it is necessary to establish the resonable strategy of cutting fluid usage and optimal control. Tool wear and cutting fluid diffusion rate in the air were measured as machinability index and environmental index in a few turing operation. Through this basic approach it can be also provide the optimization of cutting process and improvement of machine tool design in achieving environmentally conscious machining.

  • PDF

Effects of Laser Parameters and Workpiece Conditions on Cutting Characteristics of Solid Wood and Wood-based Panel(II) - Specific Cutting Energy and Surface Qualities - (레이저변수(變數)와 피삭재조건(被削材條件)이 목재(木材) 및 목질(木質)보드의 절삭특성(切削特性)에 미치는 영향(影響)(II) - 비절삭(比切削)에너지와 절삭면(切削面)의 품질(品質) -)

  • Sim, Jae-Hyeon;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.38-50
    • /
    • 1998
  • Laser cutting tests were conducted to investigate the laser cutting characteristics of solid woods such as 25mm-thick white oak(Quercus acutissima) and maple(Acer mono), and wood-based panels such as 15mm-thick medium density fiberboard and particleboard. Test variables were laser power, cutting speed, grain direction, and moisture content. Specific cutting energy was measured and the qualities of cut surface were estimated in constant laser power. Specific cutting energy of white oak was larger than that of maple, and specific cutting energy of medium density fiberboard was smaller than that of particleboard. For both white oak and maple, specific cutting energy of green wood was smaller than that of air-dried wood because weight loss of moisture evaporation in green wood was larger than that in air-dried wood. In laser-cut surface, wood cells were not deformed and damaged, but in circular saw-cut surface fibers were pushed out and cut, and wood cells were deformed severely. However, mechanical surface roughness of saw-cut surface was smoother than that of laser-cut surface because of the existence of undeformed cell cavity in laser-cut surface.

  • PDF

Cutting Force Characteristics and Tool Deflection When Machining Rectangular Shapes with a Ball End Mill (볼엔드밀 공구에 의한 사각형상 가공시 공구 휨에 따른 절삭력 특성)

  • Kim, In Soo;Kim, Sang Hyun;Lee, Dong Sup;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.26-32
    • /
    • 2019
  • Ball end mills used for high-speed and high-precision machining require longer machining time than flat end mills or face cutters, since the tool diameter is limited and the rigidity is reduced by the characteristics of the tool's cutting edge: at the top end of the tool, the cutting speed approaches zero and hardly removes any material. Because there is little material removal at the top end of the ball end mill, the outer cutting edge performs the majority of the work; this irregular cutting force deforms the tool and shortens its life. In this study, we attached an eddy-current sensor to a tool to measure the deformation from the cutting force and we used a tool dynamometer to measure the cutting force. We found that the change in cutting force is dependent on the change in feed rate during square-shaped processing and, as the feed rate is accelerated, the cutting force also increases. Higher cutting forces increase tool deformation.

A Study on the Cutting Characteristics of SCM440, SNCM21, STS 304 in Cryogenic Cutting(1st Report) (난삭재의 극저온절삭에서의 절삭 특성에 관한 연구)

  • Kim, Chill-Su;Oh, Sun-Sae;Lim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.44-53
    • /
    • 1994
  • We experimented on cutting characteristics-cutting force, behavior of cutting temprature, surface foughness, behavior of chips-under low tempdeature, which generated by liquid nitrogen (77K). The workpieces were freezed to -195 .deg. C and liquid nitrogen was also sprinkled on cutting area in order to increase the efficiency of machining in low temperature. The workpiece was became to -195 .deg. C in 5 minutes, and cutting temperature in CC was lower about 170 .deg. C than NC. The cutting force trended to increase slighty in cooled cutting, but chip thickness was decreased, shear angle was however increased. The form of chips was in good conditions of long or short tubular chips in CC. In CC surface roughness of workpiece was better than NC. In NC surface hardness of chips trended to increase according to increasing of cutting speed, but in CC it trended to decrease. The power spectrum of vertical cutting force trended to increase according to increasing of feed, and in CC it was higher than NC.

  • PDF

Development of the Automatic Machining Technology for Boat's Wooden Patterns (레저보트 목형가공 자동화에 관한 연구)

  • Kim, Seong-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.174-179
    • /
    • 2007
  • The cutting automation of boat's wooden pattern is strongly required to improve the productivity and quality of boats in leisure boat industry. This paper is concerned with the development of wooden pattern machining technology by the machining center. The leisure boat is designed with a 3 dimensional design s/w. The NC cutting data are generated in a CAM s/w and are verified using verification s/w. The cutting forces are monitored to analyse the cutting process. The surface characteristics of machined surface are investigated at various cutting conditions such as spindle speed, feed speed, the cutting direction of wood, and wood material.

Machinability Characteristics of Inconel 690 Alloys (인코넬 690 합금의 절삭성에 관한 연구)

  • 황경충;윤종호;최재하;김성청
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 2002
  • In domestic industry, there is no manufacturers specialized in the production of cutting tools for the difficult cutting materials. Then, we have flew data about them. In this study, the gear driving high speed lathe on which is mounted by a tool dynamometer and high speed CCTV were used to measure the various machining characteristics. Relations among the cutting speed, feed rate per revolution, cutting depth, cutting forces and surface roughness ware graphically analyzed under 64 cutting conditions. The process of chip, i.e., generation, development and falling-off also were visualized for the characterization of chip shapes of the difficult-to-cut materials using the CCTV.

A Study on Damaged Layer Characteristics according to Cutting Speed in End-milling (엔드밀 가공시 가공속도에 따른 가공변질층 특성 연구)

  • 황인옥;이종환;김전하;강명창;김정석;이득우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.778-781
    • /
    • 2004
  • As the technique of high-speed end-milling is widely adopted to in machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. In this study, cutting force, cutting temperature and microhardness were investigated to evaluate damaged layer in conventional machining and high-speed machining. Damaged layer was measured using optical microscope. The thickness of damaged layer depends on cutting process parameters, specially feed per tooth and radial depth. It is obtained that the characteristics of damaged layer is high-speed machining better than conventional machining.

  • PDF