• Title/Summary/Keyword: Cutter surface

Search Result 178, Processing Time 0.029 seconds

Analysis of Cutter Orientation when Ball Nose End Milling Nickel Based Superalloys (니켈계 합금의 볼엔드밀 가공에서 절삭 방향에 따른 영향)

  • Lee, Deuk-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2496-2501
    • /
    • 2000
  • High speed ball end milling is attracting interest in the aerospace industry for the machining of complex 31) airfoil surfaces in nickel based superalloys, Experimental work is detailed on the effect of cutter orientation on tool life, cutting forces, chip formation, specific force and workpiece surface roughness, when high speed ball end milling nickel based supperalloy(lnconel 718). Dry cutting was performed using 8min diameter solid carbide cutters coated with either TiA1N or CrN for the workpiece mounted at an angle of 45˚ from the cutter axis. A horizontal downwards cutting orientation provided the best tool life with cut lengths~50% longer than for all other directions. Evaluation of cutting forces and associated spectrum analysis of results indicated that cutters employed in a horizontal downwards direction produced the least vibration.

A Numerical Simulation Model for the Face Milling Operation (수치해석법에 의한 면삭밀링 작업에서의 절삭력과 표면조도에 관한 연구)

  • 홍민성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.68-75
    • /
    • 1995
  • The milling process is one of the most important metal removal processes in industry. Due to the complexities inherent to the cutter insert geometry and the milling cutter kinematics, these processes leave an analytically difficult to predict texture on the machined surface's hills and valleys. The instantaneous uncut chip cross sectional area may be estimated by the relative position between the workpiece and the cutter inserts. furthermore, since the cutting forces are proportional to the instantaneous uncut chip cross sectional area, the cutting forces in face milling operations can not be estimated easily. A new simulation program which is based upon the numerical method has been proposed to estimate the cutting force components, with the ability to predict the machined surface texture left by the face milling operation.

  • PDF

A Study on the Identification of Cutter Offset by Cutting Force Model in Milling Process (밀링가공에서 절삭력 모델을 이용한 커터 오프셋 판별에 관한 연구)

  • 김영석
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 1998
  • This paper presents a methodology for identifying the cutter runout geometry in end milling process. Cutter runout is common but undesirable phenomenon in multi-tooth machining because it introduces variable chip loading to insert which results in a accelerated tool wear. amplification of force variation and hence enlargement vibration amplitude From understanding of chip load change kinematics, the analytical cutting force convolution model was formulated as the angular domain convolution model was formulated as the angular domain convolution of three dynamic cutting force component functions. By virtue of the convolution integration property, the frequency domain expression of the local cutting forces and the chip width density of the cutter. Experimental study is presented to validate the analytical model. This study provides the in-process monitoring and compensation of dynamic cutter runout to improve machining tolerance and surface quality for industrial application.

  • PDF

Design and optimization of layout patterns for rock TBM cutterheads

  • Ebrahim Farrokh
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.179-189
    • /
    • 2024
  • This paper presents a geomechanical framework for designing and optimizing layout patterns of cutterheads for rock Tunnel Boring Machines (TBMs), aiming to enhance their engineering performance. By examining the forces and moments exerted by rock, the study addresses geometric constraints associated with cutter boxes in key regions of the cutterhead, including the center, face, and gage areas, as well as the three-dimensional effects of cutterhead curvature on the geometric constraints of the back of the cutter boxes in the gage area. Novel formulas are proposed for determining the center points of cutter boxes and calculating both the minimum angular spacing and distance spacing between consecutive cutter boxes along a spiral path. The paper outlines an optimized layout design process for four cutterhead configurations: random, random paired, radial, and double spiral designs. Examples are provided to illustrate the results of applying these designs. The findings underscore the efficacy of the proposed methods in achieving a uniform and symmetrical distribution of cutters and buckets on the cutterhead surface. This approach effectively eliminates boundary overlap and minimizes unbalanced forces and moments. From a geomechanical standpoint, this framework offers a robust strategy for enhancing the performance and reliability of TBM cutterheads in rock tunneling operations.

The Improvement of Surface Roughness of Marine Propeller by Continuous Control of Cutter Posture in 5-Axis Machining (공구자세의 연속제어를 통한 선박용 프로펠러의 5축 가공 표면조도의 개선)

  • Son, Hwang-Jin;Lim, Eun-Seong;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.27-33
    • /
    • 2012
  • A marine propeller is designed for preventing cavitation priority. Cavitation is a phenomenon which is defined as the vibration or noise by dropping the pressure on the high-speed rotation of the propeller. There has to be a enough thrust on the low-speed rotation for preventing cavitation. Thus, it has to be considered in the increasing of the number of blade and the angle of wing to design the propeller. In addition, flow resistance will be increasing by narrowing the width between blades. So high quality surface roughness of the hub to minimize flow resistance is required. Interference problems with tool and neighboring surfaces often take place from this kind of characteristics of the propeller. During 5-Axis machining of these propellers, the excessive local interference avoidance, necessary to avoid interference, leads to inconsistency of cutter posture, low quality of machined surface. Therefore, in order to increase the surface quality, it is necessary to minimize the cutter posture changes and create a continuous tool path while avoiding interference. This study, by using a MC-space algorithm for interference avoidance and a MB-spline algorithm for continuous control, is intended to create a 5-Axis machining tool path with excellent surface quality. Also, an effectiveness is confirmed through a verification manufacturing.

Stress and wear distribution characteristics of cutterhead for EPB shield tunneling in cobble-boulders

  • Zhiyong Yang;Xiaokang Shao;Hao Han;Yusheng Jiang;Jili Feng;Wei Wang;Zhengyang Sun
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.73-84
    • /
    • 2024
  • Owing to the high strength and abrasive characteristics of cobble-boulders, cutters are easily worn and damaged during shield tunneling, making construction inefficient. In the present work, the stress on the ripper and scraper on the cutterhead was analyzed by the PFC3D-FLAC3D coupling model of shield tunneling to get insight into the performance of the cutterhead for cutting underground cobble and boulders. The numerical calculation results revealed that the increase in trajectory radius leads to a rising stress on the cutters, and the stress on the front cutting surface is greater than that on the back of the cutters. Moreover, the correlation between cutter wear and stress is revealed based on field measurement data. The distribution of the cutter stress is consistent with the cutter wear and breakage characteristics in actual construction, in which more extensive cutter stress is exhibited, extreme cutter wear appears, and more cutter breakage occurs. Finally, the relationship between the cutterhead opening area's layout and cutter wear distribution was investigated, indicating that the cutter wear extent is the most severe in the region where the radial opening ratio dropped sharply.

A Study on the Avidance of Tool Interference in Free form Surface Machining (3차원 자유곡면 가공에 있어서의 공구간섭방지에 관한 연구)

  • 양균의;박윤섭;이희관
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1832-1843
    • /
    • 1995
  • Tool interference is one of the most critical problems in sculptured surface machining. When machining cavities and concaves, the tool frequently overcuts the portions of the surface, which cause inaccuracy in machining. So tool interference-free paths must be generated for rough cutting more efficiently. In this paper a software using SSI(Surface/Surface intersection) algorithm is developed for eliminating tool interference which occurs in an offset surface in 3-dimensional free form surface modeling. this work consists of two stages : using the offset data, the intersection curves are rapidly checked by this algorithm at the first stage. CL(cutter location) data are obtained by deleting the loop section of intersected offset patches at the second stage. This algorithm can reduce the amount of memory required to store machining data and also easily check region which have the possibility of intersection. Also, This software is verified to be useful in machining a curved object on a DNC milling machine.

Cutter Interference Avoidance in NC Machining of Compound Surfaces (복합곡면 NC 가공에서의 공구간섭 방지)

  • Jun, Cha-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.3
    • /
    • pp.139-154
    • /
    • 1993
  • Cutter Interference(or part surface gouging) is one of the most critical problems in NC machining of sculptured surfaces. Presented in this paper is and algorithmic procedure that converts CC data obtained from a compound surface(several surfaces without topological relationship) into interference-free CL data. The interference handling procedure consists of following steps: (1) Z-map model is constructed from input surfaces. (2) Interference sources are detected using local properties of the sources. (3) Interference regions are completely identified based on global tests for neighboring CC points of the interference sources (4) Cutter paths are reconstructed after removing the CC data in interference regions, while avoiding any new interferences.

  • PDF

Prediction of Mean Cutting Force in Ball-end Milling using 2-map and Cutting Parameter (Z-map과 절삭계수를 이용한 볼엔드밀의 평균절삭력 예측)

  • 황인길;김규만;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.179-184
    • /
    • 1995
  • A new cutting parameter is defined in the spherical part of ball end-mill cutter. A series of slot cutting experiments were carried out to obtain the cutting parameter. The cutter contact area is expressed as the grid posiotion in the cutting plane using Z map. The cutting forces in each grid are calculated and saved as force map, prior to the average cutting forces calculation. The cutting force, in the arbitrary cutting area, can be easily calculated by summing up the cutting forces of the engaged grid in the force map. This model was verified in the inclined surface cutting by cutting test of a cylindrical part.

  • PDF

A Study on the Design of Endmill Geometry in High Speed Machining (고속가공용 엔드밀의 형상설계에 관한 연구(2))

  • 고성림;배승민;김경배;서천석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.19-22
    • /
    • 1997
  • The objective of this research is to use an analytical and experimental approach to develop optimal tool geometry for high speed machining. The tool geometry parameters and cutting process have complex relationships. Until now, numerous cutting tests were needed to acquire optimal design of endmill for the purpose of high speed machining, dut to the insufficient knowledge about process in high speed machining. In order to improve the cutting ability of endmill, a model for optimal cutter shape was developed to minimize resultant cutting force by combing cutting force and wear test and surface roughness test from optimized and conventional cutter with the same cutting condition. Using various tools with different geometry, relationships between the tool geometry parameter, rake angle, clearance angle, lengh of cutter have been stuied.

  • PDF