• Title/Summary/Keyword: Cuticle layer

Search Result 58, Processing Time 0.03 seconds

An ultrastructural study of the cuticle in the byssus of marine mussel (Mytilus coruscus) (홍합 (Mytilus coruscus) 족사 cuticle의 초미세구조 연구)

  • Kim, Sangsik;Choi, Seung Hwan;Yoon, Sung Jin;Hwang, Dong Soo
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.41-46
    • /
    • 2014
  • Mussel byssus is a bundle of threads used to attach mussels to wet substrates. Recently, a thin cuticle layer on the byssus has attracted public attentions due to its remarkable toughness - stiff as epoxy resin and extensible as rubber. Here, we observed ultrastructure of the cuticle layer in a far eastern mussel (Mytilus coruscus) to understand underlying mechanisms for the mechanical properties. The cuticle layer observed by TEM was composed of submicron-sized granular inclusions in a continuous matrix phase. In addition, ultrastructural study in the presence of tertiary amine (Tetraethylammonium, TEA) showed an evidence that the cuticle is stabilized by cation-${\pi}$ interaction.

Studies on Salmonella enteritidis Contamination in Chicken Egg using Confocal Scanning Laser Microscopy (Confocal Scanning Laser Microscopy 를 이용한 계란에서의 Salmonella enteritidis 오염 연구)

  • Jang, Keum-Il;Park, Jong-Hyun;Kim, Kwang-Yup
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.771-777
    • /
    • 1999
  • The structural function of three egg membrane layers and cuticle layer, and the effectiveness of 5 film coatings (chitosan, starch, gelatin, dextrin, mineral oil) on the prevention of Salmonella enteritidis penetration was investigated using confocal scanning laser microscopy (CSLM). Diameters of outer membrane fibers, inner membrane fibers and limiting membrane particles in eggshell were $1.5{\sim}7.2$, $0.8{\sim}2.0$ and $0.1{\sim}1.4\;{\mu}m$, respectively and average thicknesses were 10.0, 3.5, $3.6\;{\mu}m$, respectively. Average thickness of cuticle layer was $6.0\;{\mu}m$ and cuticle layer covered $40{\sim}80%$ of total eggshell surface. Average coating films thickness for chitosan, starch, gelatin, dextrin and mineral oil were 2.2, 2.5, 3.9, 3.6 and $5.0\;{\mu}m$, respectively. After immersion process eggshell surface was almost completely covered by coating films. Chitosan coating was most effective among 5 film coatings in inhibiting growth of Salmonella enteritidis. Penetration process of Salmonella enteritidis through eggshell was investigated by multicolor imaging using CSLM and plate counting. Cuticle layer was the most important structure in blocking the penetration. Among 5 film coatings, chitosan showed the best and similar effectiveness with cuticle layer.

  • PDF

Study on Production of Cuticle Precursor within Silk Gland Duct of the Spider, Nephila clavata L. Koch (거미(Nephila clavata L. Koch) 견사선 분비관에서의 큐티클 전구체 생성에 관한 연구)

  • Moon, Myung-Jin
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.20-32
    • /
    • 1995
  • Ultrastructural aspects on the production of the duct cuticle and formation of cuticular precursors within silk glands of the orb web spider, Nephila clavata L. Koch(Araneae: Araneidae), were studied using transmission electron microscope. Four kinds of silk glands(ampullate glands, tubuliform glands, flageliform glands, and aggregate glands), which connected with large spinning tubes(spigots) of the spinnerets, were examined and discussed in terms of cuticle precursor production. Inner cuticular intima which composed of three layers of cuticles-subcuticle, endocuticle and exocuticle- were commonly originated from duct epithelial cells surrounding the cuticle. The morphology and internal textures of each cuticle precursors were very diverse according to the types of silk glands. However several common features were observed. These cuticle precursors were first produced from the rough endoplasmic reticulum and next concentration was accomplished through the Golgi complex. After this step, cuticle precursors were released to the cuticle layer as a form of secretory granule by the mechanism of merocrine secretion commonly.

  • PDF

A Study on the Influences of LOHAS Consciousness on LOHAS Cuticle Management (로하스 의식이 로하스 큐티클 관리에 미치는 영향)

  • Cho, Youn-Hee;Kim, Soon-Shim
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.14 no.2
    • /
    • pp.215-227
    • /
    • 2012
  • This study aims to analyze the influences of LOHAS cuticle management, which based on LOHAS consciousness among customers using nail art shops and removes only Cuticle layer without Eponychium, on the preference and expected value of service quality. Further, it tackles how above related variables have important bearing on reuse intention. A survey was conducted only with customers over the age of 20 in Seoul, Daejeon and Daegu areas in terms of LOHAS consciousness. For the collected 389 data, frequency analysis, t-test, ANOVA, correlation analysis and multiple regression analysis were carried out by using SPSS 18.0 Version statistical package. The results are as follows. First, according to the results, it shows high positive correlation between LOHAS cuticle management based on the consciousness of LOHAS, and LOHAS cuticle management preference, tendency and willingness to transfer toward it. Second. it is proven that LOHAS consciousness tend to be possessed in older age groups, married and a professional employee layers and this LOHAS motivated groups showed high LOHAS cuticle management preference, inclination and intention of a change in management. Lastly, the reuse intention is mostly affected by experience and preference of LOHAS cuticle management. There is negative correlation between reuse intention and experience in blooding and pain during care service. Higher interest in preference of LOHAS cuticle management has highly influenced positive link with the repurchase intention.

  • PDF

Ultrasturctural Study on Nectar Secretion from Extrafloral Nectary of Prunus yedoensis Matsumura (왕벚나무 화외밀선의 당액 분비에 관한 미세구조적 연구)

  • 정병갑
    • Journal of Plant Biology
    • /
    • v.35 no.2
    • /
    • pp.143-153
    • /
    • 1992
  • Nectar secretion from extrafloral nectary cells of Prunus yedoensis was examined by light and electron microscopy. Nectaries were composed of two or three layers of secretory cells and one layer of subsectretory cells. Vascular bundles in the petioles were connected to those of the subsectretory cell layer. Secretory cells had a number of mitochondria with poorly developed cristae. Plastids had little thylakoids and small vesicles, about 0.2 to 0.3 mm in diameter; however, no plastids had starch grains. Calcium oxalate crystals and plasmodesmata were frequently observed in the subsectretory and secretory cells, respectively. And nectar substances were observed in phloem of petiole, subsectretory, and secretory cells of the secretory gland. These results suggested that the nectar moved by symplastic transport through the plasmodesmata. On the other hand, the nectar droplets were observed in the secretory cell walls. in the cuticular layer just beyond of the former, and on the outer surface of the cuticular layer: such observations indicated that a apoplastic movement was involved in the final step of the nectar secretion. Cellular components related to the nectar transport, such as plasma membrane, cell wall and cuticle were not destroyed but intact: it was interpreted as a eccrine secretion.retion.

  • PDF

Ultrastructure of Capitate Glandular Trichome in Leaf of Thymus quinquecostatus (백리향 (Thymus quinquecostatus Celakovsky) 잎에 분포하는 두상형 분비모의 미세구조)

  • Shin, Hyun-Chur;Yu, Seong-Cheol
    • Applied Microscopy
    • /
    • v.28 no.2
    • /
    • pp.159-170
    • /
    • 1998
  • The glandular secretory system of the capitate gandular trichomes in leaf of Thymus quinquecostatus Celakovsky was examined by transmission electron microscope. The glandular trichome was consisted of three cell layers; an basal cell layer, a stalk cell with single-celled intermediate layer and a discoid secretory layer with thickened cuticle. The secretory cell was dense, rich in mitochondria, rER, plastds, Golgi complex and had many vesicular structure. Typical plastids with reticulate body and plastoglobule were present in glandular trichome. The tytoplasm of secretory cell was filled with osmiophilic secretory materials. The secretory vesicles, originated from Golgi complex, appeared as membrane bounded vesicles and secreted to the outer wall surface. The presences of well developed rER, mitochondria, Golgi complex, and membrane-bounded vesicles fused with plasmalemma in the secreting cells indicate that the granulocrine mechanism of secretion was occurring in T. quinquecostatus. Subcuticular cavity was developed between the cuticular layer and the secretory cell wall, and it formed above the secretory cell upon separation of cuticle-wall.

  • PDF

Micromorphology and development of the epicuticular structure on the epidermal cell of ginseng leaves

  • Lee, Kyounghwan;Nah, Seung-Yeol;Kim, Eun-Soo
    • Journal of Ginseng Research
    • /
    • v.39 no.2
    • /
    • pp.135-140
    • /
    • 2015
  • Background: A leaf cuticle has different structures and functions as a barrier to water loss and as protection from various environmental stressors. Methods: Leaves of Panax ginseng were examined by scanning electron microscopy and transmission electron microscopy to investigate the characteristics and development of the epicuticular structure. Results: Along the epidermal wall surface, the uniformly protuberant fine structure was on the adaxial surface of the cuticle. This epicuticular structure was highly wrinkled and radially extended to the marginal region of epidermal cells. The cuticle at the protuberant positions maintained the same thickness. The density of the wall matrix under the structures was also similar to that of the other wall region. By contrast, none of this structure was distributed on the abaxial surface, except in the region of the stoma. During the early developmental phase of the epicuticular structure, small vesicles appeared on wallecuticle interface in the peripheral wall of epidermal cells. Some electron-opaque vesicles adjacent to the cuticle were fused and formed the cuticle layer, whereas electron-translucent vesicles contacted each other and progressively increased in size within the epidermal wall. Conclusion: The outwardly projected cuticle and epidermal cell wall (i.e., an epicuticular wrinkle) acts as a major barrier to block out sunlight in ginseng leaves. The small vesicles in the peripheral region of epidermal cells may suppress the cuticle and parts of epidermal wall, push it upward, and consequently contribute to the formation of the epicuticular structure.

Morphological Changes of Hair by Repeated Treatments of Permanent Wave (퍼머넌트 웨이브의 반복시술에 의한 모발의 형태학적 변화)

  • Kim, Keum-Eui;Lee, Gui-Young;Kim, Dong-Heui;Ham, Joo-Hyun;Lee, Jae-Cheon;Chang, Byung-Soo
    • Applied Microscopy
    • /
    • v.39 no.2
    • /
    • pp.199-204
    • /
    • 2009
  • In this study, we observed the effects of repeated perms on the morphology of virgin hair of a healthy thirteen year-old girl with scanning electron microscopy. After the first treatment, the outer parts of cuticle cell were broken unevenly and roughly. Cuticle cells were lifted upward making a space. After the third treatment, cuticle cells were lifted off one another and the folded scales showed irregular surface areas. Broken pieces of cells were stuck on the surface and an empty hole was present in the endocuticle of the cytoplasm. We observed that cortex separated from cuticle layer more easilywith repeated treatments.

Corneal Formation of the Compound Eye in Pieris rapae L. (배추흰나비 복안의 각막 형성)

  • Kim, Chang-Shik;Kim, Woo-Kap;Kim, Chang-Whan
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.98-106
    • /
    • 1994
  • The corneal formation of compound eye of Pieris rapae L., which was mostly made during pupal stage, was morphologically investigated with light microscope, scanning electron microscope and transmission electron microscope. The regeneration of the microvilli were found on the surface membranes of corneagen cells and retinular pigment cells of preommatidium after apolysis pupal cuticle. The microvilli were finally differentiated to corneal nipples of the ommatidium. The corneal cuticle was generated on the superficial layer of the preommatidium from corneagen cells and retinular pigment cells. The corneal process was also formed under the cuticular layer from the corneagen cells. The pore canal was appeared within the cuticular layer and connected with the retinular pigment cell as if the root of interommatidial hair was connected. The interommatidial hair was projected randomly among the ommatidial facets and cornal nipple was arrayed regular on the ommatidial facets. The cornea was convex lens and the refracting power by its convex shape was 4 diopter.

  • PDF

The Localization of the Excretory, Purified and Infected Antigenic Protein in the Tissue of Trichinella spiralis Larval Worm (선모충(Trichinella spiralis) 유충의 조직 내 배설, 분리 및 감염항원 단백의 분포)

  • Kim, Soo-Jin;Joo, Kyoung-Hwan;Chung, Myung-Sook;Rho, Young-Bok
    • Applied Microscopy
    • /
    • v.37 no.1
    • /
    • pp.43-52
    • /
    • 2007
  • In order to observe the localization of excretory, purified and infected antigenic protein in the tissue of Trichinella spiralis larvae, immunogoldlabeling methodology using IgG and protein A-gold complex was implemented. T. spiralis larvae obtained from rat muscle were initially cultured in medium, and secreted excretory antigen was collected for 1 or 3 days. Purified antigenic protein was obtained from homogenized T. spiralis larvae. Rabbits were then immunized with 1 or 3 days secreted excretory protein and purified 45 kDa protein, and IgG was purified from collected serum. Serum, against infected antigen, collected from rat on 1 and 4 weeks after infection with T. spiralis larvae, and IgG was purified from collected serum. T. spiralis larvae were embedded in Lowicryl HM20 medium. Then they were finally treated with immunized IgG and protein A-gold complex (particle size; 15 nm) and observed under electron microscope. In T. spiralis larvae tissue, the tissue antigen reacted with rabbit IgC antigen Day 1 secreted excretory protein, infected antigenic protein and purified 45 kDa protein. But different distribution pattern of labeled gold particles were observed. When Day 1 secreted excretoy protein was used, gold particle labeling was observed specifically on the cuticle, basal layer, esophagus interstitial matrix (EIM) and ${\alpha}_0,\;{\alpha}_1$ granules of stichocyte of the worm. In a separate group of tissue, the antigen reacted with rabbit IgG against Day 3 secreted excretory protein. Labeled gold particles were specifically distributed on the surface layer of cuticle, EIM and ${\alpha}_0$ granules of stichocyte of the worm. In case of using infected antigenic protein, gold particle labeling was specifically distributed on the cuticle and EIM of the worm. When purifed 45 kDa protein was used gold particle labeling was specifically distributed on the cuticle, basal layer, EIM and ${\alpha}_0,\;{\alpha}_1$ granules of stichocyte of the worm. Therefore, excretory antigens appeared to originate from the cuticle and ${\alpha}_0,\;{\alpha}_1$ granules of stichocyte for the first day but the cuticle layer associated with globular proteins and ${\alpha}_0$ granules of stichocyte after 3 days and infected antigens appeared to originate from the cuticle for 1 and 4 weeks after infection. These results suggest that excretory and infection specific antigens are secreted into the cuticle, basal layer, EIM and ${\alpha}_0,\;{\alpha}_1$ granules of stichocyte and 45 kDa protein may be contained these specific antigens.