• Title/Summary/Keyword: Cut-Slope failure

Search Result 115, Processing Time 0.027 seconds

An Analysis of Stability on Rock Slope by Changing Water Level (지하수위 변화에 따른 암반사면의 안정성 해석)

  • Jang, Hyong-Doo;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.7-14
    • /
    • 2010
  • A quarry with 105 m height large cut slope was analyzed. Beside RMR and SMR methods, FLAC2D were adopted to analyze slope stability. As a result, slope of andesite had a possibility of failure. Wet slope showed low safety factor. Soil nailing was recommended to solve it. Since safety factor of slope largely depend on underground level, investigation for it seemed necessary.

Comparison Analysis of Factor of Safety on Rock Slope in Boeun Region Using Distinct Element Method and Limit Equilibrium Method (개별요소법과 한계평형법을 이용한 보은지역 암반사면 안전율 비교해석)

  • 이지수;유광호;박혁진;민경덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.33-41
    • /
    • 2003
  • The large planar failure has occurred in a rock cut slope of highway construction site in Boeun. This area is considered to be unstable since the discontinuity, whose orientation is similar to the orientation of the failure plane, is observed in many areas. Therefore, several analysis techniques such as SMR, stereographic analysis, limit equilibrium, numerical analysis, which are commonly used in rock slope stability analysis, are adopted in this area. In order to analyze the stress redistribution and nonlinear displacement caused by cut, which are not able to be obtained in limit equilibrium method, DEM and shear strength reduction technique were used in this study. Then the factors of safety evaluated by shear strength reduction technique and limit equilibrium were compared. In addition, the factor of safety under fully saturated slope condition was calculated and subsequently, the effect of the reinforcement was evaluated.

A Numerical Study on the Behavior of Convex and Concave Slopes in Plan View (볼록 및 오목 사면 형상에 따른 거동에 대한 수치해석 모형 연구)

  • 정우철;박형동;박연준;유광호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.213-220
    • /
    • 2000
  • Numerical modeling of cut slope has some limits in simulating the real slopes. In the case of 2D analysis of slope stability, it is assumed that slope is simply straight even when it is concave or convex in plan view. In this study, 3D analysis in curved shape slopes has been conducted for the comparison with 2D analysis in terms of failure mode and factor of safety. For this, 3D analysis by FLAC3D was compared with 2D analysis in plane strain condition and axi-symmetric model condition by FLAC. It was also observed how safety factors of slopes were affected by the variation of the tensile strength and cohesion, which are important variables to decide whether the slope fails or not. 2D analysis of concave slopes under plane strain condition showed much smaller safety factors by 16-40 % errors depending on the radius of curvature of slopes, compared to the more realistic values from 3D analysis. In case of convex slopes, the lower values by 7-10 % has been reported. 2D analysis of axi-symmetric model showed also smaller safety factors by 6-10 % and by 2-4 %, in case of concave and convex slopes, respectively. Such results are expected to contribute to the better understanding of failure process and could be applied for improved design of slopes.

  • PDF

A Study on the Stability Analysis and Countermeasure of Tunnel Portal Failure Slope - in Suanbo Hot Springs 1 and 2 Tunnel Failure Site (터널 갱구부 붕괴 사면의 안정성 해석 및 보강공법에 관한 연구 - 수안보 온천 1, 2터널 붕괴 현장을 중심으로)

  • Baek, Yong;Koo, Ho-Bon;Yoo, Ki-Jeong
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.367-378
    • /
    • 2002
  • Recently, the number of tunnels on national roads has been increased due to the trend that construction of the large-scaled cut slopes is limited because of the environmental issues. Therefore, the slope failures of tunnel portal have often occurred. The tunnel portal in use has limitations on selection of the countermeasure and construction against slope failure. In the cases of Suanbo hot springs 1 and 2 tunnel portals, seedding was chosen and constructed as the countermeasureof slope failure when the tunnel was first built but collapsed in April, 2002. In this study, the failure sites were examined accurately through the site investigation and an efficient countermeasure according to stability analysis is presented. It is shown that it is very efficient to use resloping for Suanbo hot springs 1 tunnel and concrete buttress, rock anchor to reinforcement countermeasure, and attached rockfall prevention net by dividing the site into 3 sections for Suanbo hot springs 2 tunnel.

A Study on the Evaluation of Stability due to Ground Deterioration of Slope (사면의 지반 열화로 인한 안정성 평가에 관한 연구)

  • Han, Young-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.83-92
    • /
    • 2018
  • The lapse of time may cause in the slope structure various deterioration phenomenon progresses in the ground of slope, and collapse due to deterioration of strength, resulting in a decrease in the service life. The approach to slope stability due to the ground deterioration is a different concept from the existing limit equilibrium analysis, which is limited to the physical characteristics and geometrical structure of ground. In this study, we conducted a comparative analysis of various literature studies related to the slope failure characteristics and behaviors to presented the optimal formulas for shear strength reduction, such as the exponential function, the logarithmic function and the inverse hyperbolic function. And then a case study was performed on cut slope of Gyeongbu High Speed Rail construction site along the Yangsan fault zone, where the slope failure of shale layer vulnerable to deterioration occurred. As a result, it was confirmed that landslide occurred due to reduction of shear strength by deterioration, as safety factor is approx. 1.0 at the time when the slope failure occurred. Based on the comprehensive case study, as a quantitative approach to the evaluation of slope stability due to deterioration of ground, finally we propose a method for evaluating slope stability with optimal strength reduction curves.

Case Study on the Causes for the Failure of Large Scale Rock Mass Slope Composed of Metasedimentary Rocks (변성퇴적암류로 구성된 대규모 암반사면의 붕괴원인 분석에 관한 사례 연구)

  • Park, Boo-Seong;Jo, Hyun;Cha, Seung-Hun;Lee, Ki-Hwan
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.506-525
    • /
    • 2006
  • For the design of large scale rock slope which has complex formations and geological structures, generally, insufficiency of geotechnical investigations and laboratory tests are the main factors of slope failures doling construction. In such case, remedial measures to stabilize slope should be selected and applied through reliable investigations and analysis considering the geotechnical characteristics. The rock slope of this study, one of the largest cut slopes in Korea with a length of 520.0 m and maximum height of 122.0 m consists of metasedimentary rocks. And a case study on the causes of large-scale rock slope failure was carried out by analysis of landslides history and site investigations during construction. When the slope with the original design slope of 0.7: 1.0 (H:V) was partially constructed, the slope failure was occurred due to the factors such as poor conditions of rocks (weathered zone, coaly shale and fault shear zone), various discontinuities (joints, foliations and faults), severe rain storm and so on. The types of failures were rockfall, circular failure, wedge failure and the combination of these types. So, the design of slope was changed three times to ensure long-term slope stability. This paper is intended to be a useful reference for analyzing and estimating the stability of rock slopes whose site conditions are similar to those of this study site such as geological structures and geotechnical properties.

An Analysis of Cut-slope Based on the Prediction of Joint Distribution inside the Cut-face (개착면 내부에서의 절리분포 예측을 통한 사면 해석)

  • Lee Chang-Sup;Chung Jin-Bo;Cho Taechin
    • Tunnel and Underground Space
    • /
    • v.14 no.6 s.53
    • /
    • pp.391-398
    • /
    • 2004
  • An algebraic algorithm for predicting the joint trace distribution on the cut-face of rock slope based on the orientations and the locations of joints investigated in the borehole has been developed. Joint trace prediction is manipulated by utilizing the three dimensional plane equations of both joint planes and projection face, and the extent of trace within the projection area is calculated by considering the persistence of each joint plane. Joint trace prediction method is efficiently applied for analyzing the stability and the adequacy of support design of Gimhae Naesam cut-slope, which is structurally unstable due to slumping. Structural characteristics of rock mass is investigated by performing DOM drilling and the potential rock mass sliding inside slope face is analyzed by examining the orientations of joint planes which can induce the slope failure. Also, the efficiency of anchor support design is evaluated by considering the joint trace distribution on the anchor installation area and its sliding potential.

A Case Study on The Stability and Reinforcement Method at a Rock Slope (암반사면의 안정성검토 및 보강방안에 관한 사례연구)

  • Chun, Byung-Sik;Lee, Seung-Eun;Kong, Jin-Young;Lim, Joo-Heon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1369-1375
    • /
    • 2006
  • This study analyzes stability and the reason of slope failure about cut slope on stony mountain in Acheondong, Guri and suggests the reasonal reinforce method. Based on the results of the subsurface exploration, laboratory tests, and the numerical analysis of finite element method, the potentials of plane and wedge failure are highly estimated. The safety factor was 1.2 under dry and 1.06 wet condition. The most proper reinforce method to raise the safety factor more than 1.5 was the way to control displacement by using step retaining wall, earth anchor, wire mesh, and rock anchor.

  • PDF

Study on Analysis for the Slope Monitoring Performance at the Whangryeong Mountain Site (황령산 사면 계측관리 분석에 관한 연구)

  • La Won Jin;Choi Jung Chan;Kim Kyung Soo;Cho Yong Chan
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.429-442
    • /
    • 2004
  • Landslide of the Whanpyeong Mountain which was occurred at Busan Metropolitan City in 1999 belongs to the category of plane failure. Automatic monitoring system to measure horizontal displacement, pore pressure change and load change has operating from reconstruction stage for evaluating rock slope stability (August, 2000$\~$Feburuary, 2002). As a result of the analysis on the monitoring performance data, it is suggested that infiltrated rain water from pound surface discharges rapidly through cut-slope because pressure head of water decreases rapidly after rainfall while rise of pore pressure is proportional to the amount of rain water. As a result of data analyses for inclinometers and load cells, it seems that slope is stablized be cause ground deformation is rarely detected. The areas especially similar to the study site where landslide is induced by heavy rain fall, change of pore pressure is rapidly analyzed using automatic monitoring system. Therefore, it is considered that automatic monitoring system is very effect for slope stability analysis on important cut-slopes.

A proposal and application of critical rainfall curve for disaster prevention of railway slopes due to rainfall(I) (강우에 의한 철도토공사면 방재를 위한 한계우량식 산출 및 적용(I))

  • 김현기;박영곤;신민호
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.437-442
    • /
    • 2001
  • In Korea, collapse of railway slopes is frequently occurred due to tycoon or heavy rainfall doling rainy season and has been made personal and social damage greatly. In order to evaluate the stability of railway slopes under rainfall, explanatory variables and subordinate variables were selected for multivariate analysis. The sites which failure had occurred due to rainfall were investigated and critical rainfall was defined by the case that had high value of correlation factor after multivariate analyses for 121 cases had been executed. The maximum hourly rainfall during 24 hours before failure caused the collapse of railway embankment and the 0.3 square value of maximum hourly rainfall during 24 hours before failure caused the collapse of railway cut-slope, From the application to collapse examples, it is judged that critical rainfall curve will be used to estimate the stability of slopes.

  • PDF