• Title/Summary/Keyword: Cut-Slope failure

Search Result 115, Processing Time 0.024 seconds

Case study of Cut-slop failure caused by rock anisotropy (암석의 이방성에 기인한 절토사면 붕괴 사례연구)

  • Jung, Young-Kook;Chang, Buhm-Soo;Shin, Chang-Gun;Lee, Yeon-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.831-837
    • /
    • 2005
  • In this study, a computer program to predict the behavior of laterally loaded single pile and pile groups was developed by using a beam-column analysis in which the soils are modeled as nonlinear springs by a family of p-y curves for subgrade modulus. The special attention was given to the lateral displacement of a single pile and pile groups due to the soil condition and the cap rigidity. The analysis considering group effect was carried out for $2\;{\times}\;2\;and\;3\;{\times}\;3$ pile groups with the pile spacing 3.0B, 4.0B and 5.0B. Based on the results obtained, it is found that the overall distributions of deflection, slope, moment, and shear force in a single pile give a reasonable results irrespective of cap connectivity conditions. It is also found that even though there are some deviations in deflection prediction compared with the observed ones, the prediction by present analysis simulates much better the general trend observed by the centrifuge tests than the numerical solution predicted by PIGLET.

  • PDF

Risk Analysis for Cut Slope using Probabilistic Index of Landslide (사면파괴 가능성 지수를 이용한 절취사면 위험도 분석)

  • Jang, Hyun-Shic;Oh, Chan-Sung;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.163-176
    • /
    • 2007
  • Landslides which is one of the major natural hazard is defined as a mass movement of weathered material rock and debris due to gravity and can be triggered by complex mechanism. It causes enormous property damages and losses of human lift directly and indirectly. In order to mitigate landslide risk effectively, a new method is required to develope for better understanding of landslide risk based on the damaged cost produce, investment priority data, etc. In this study, we suggest a new evaluation method for slope stability using risk analysis. 30 slopes including 10 stable slopes, 10 slopes of possible failure and 10 failed slopes along the national and local roads are examined. Risk analysis comprises the hazard analysis and the consequence analysis. Risk scores evaluated by risk analysis show very clear boundaries for each category and are the highest for the failed slopes and the lowest for the stable slopes. The evaluation method for slope stability suggested by this research may define the condition and stability of slope more clearly than other methods suggested by others.

An Analytical Study on the Revegetation Methods for Highway Slopes (고속도로 절·성토 비탈면 녹화 공법의 적용 실태 연구)

  • Kim, Namchoon;Song, Hokyung;Park, Gwansoo;Jeon, Giseong;Lee, Sanghwa;Lee, Byungjoon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.2
    • /
    • pp.1-15
    • /
    • 2007
  • A variety of revegetation methods are being utilized and developed. However, most of revegetation methods used on highway slopes in Korea are based on foreign-introduced plant varieties to stabilize road surfaces and to administer afforestation for surface covering at an earlier phase. Therefore. it results in various problems. such as failure to achieve harmony with the surrounding vegetation and 10 cause re-denudation of slopes as the foreign-in introduced plant varieties wane out from 2~3 years after hydro-seeding, etc. In addition, some of the revegetation plants seeded in the earlier phase grow excessively high, thus causes successional problems, such as to inhibit the invasion of the secondary vegetation from the surrounding areas, etc. Therefore, in this study, 160 slopes located in the nationwide express highways have been investigated and analyzed in order to produce basic data for restoration of ecological environment in slopes created on a long-term basis by investigating and analyzing locational characteristics of cut and filled slopes in express highways, status of revegetation methods, characteristics of soil and plant-ecological environment. 1. Investigation on cut and embanked slopes in express highways was carried out in the total of 160 locations, which include 108 cut slopes and 52 embanked slopes. As a whole, the most frequently used revegetation method was seed spray, which was found to be used in the total of 55 target slops investigated. 2. Planting method of Wistaria floribunda applied to some of the blasted rock zones was found to cause damages as Wistaria floribunda trailed up the surrounding vegetation and the secondary invaded trees. In order to prevent this, this method must be used only in the lowest parts of large-sized slopes. Also, it will be required to administer continuous management and maintenance in the areas already planted with this plants. 3. The areas of blasted rock and ripping rock slopes were applied with coir net (net + seeding) method. However, many of these areas failed in achieving ground covering. Most areas where revegetation was in progress, they were covered with Eragrostis curvula(Weeping lovegrass) only. In areas with soil, such as decomposition of granite, where afforestation is difficult. In this slopes, soil base must be improved by hrdroseeding with thin-layer vegetation base application methods in order to achieve success in afforestation with native plants. 4. Woody species, rather than herb species, are more helpful in stabilization of slope surfaces. Therefore, it is important to be able to grow and protect woody species on highway slopes. Growth of woody vegetation is most largely influenced by soil depth. Thus, when hydro-seeding woody plants, it is recommended to apply at the upper layer of the slopes, which is capable to sufficiently provide the fundamentals required in plant growth.

Engineering Characteristics of Soil Slopes Dependent on Geology - Hwangryeong Mt. District, Busan - (지질에 따른 토층사면의 토질공학적 특성 -부산 황령산지역-)

  • Kim Kyeong-Su;Lee Moon-Se;Cho Yong-Chan;Chae Byung-Gon;Lee Choon-Oh
    • The Journal of Engineering Geology
    • /
    • v.14 no.4 s.41
    • /
    • pp.487-498
    • /
    • 2004
  • There is an increasing trend of construction works in mountainous areas by the urban development in Busan that is mainly composed of mountains. The study area, Hwangryeong Mt., is one of developing sites in the urban area, too. Landslides and cut-slope failures that occur large damages of human beings and the properties are influenced by soil characteristics as well as rock properties. This study analyzed geotechnical characteristics of soil dependent on geology at Hwangryeong Mt. where a large slope failure had been occurred in 1999. Geology of the study area is composed of the Cretaceous sedimentary rocks and volcanic rocks. Soil layer of the slopes can be grouped into sand mixed with clay and silt. The cohesion is plotted between $0.001\;and\;0.066kg/cm^2$. The friction angles are distributed in the ranges between $32^{\circ}\;and\;39^{\circ}$, meaning soil bearing a high friction angle. The permeability coefficients are plotted between $2.34\times10^{-4}cm/sec\;and\;2.58\times10^{-2}cm/sec$, indicating fine sand and loose silt with a medium grade of permeability. The sedimentary rocks area shows relatively higher permeability coefficients than those volcanic rocks area.

A Study on the Deformation Behavior of the Segmental Grid Retaining Wall Using Scaled Model Tests (조립식 격자 옹벽의 변형거동에 관한 모형실험 연구)

  • Bae, Woo-Seok;Kwon, Young-Cheul;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.350-359
    • /
    • 2007
  • Most large cut slopes of open pit mines, roadways, and railways are steeply inclined and composed with rocks that do not contain soils. However, these rock slopes suffer both weathering and fragmentation. In the case of steep slopes, falling rock and collapse of a slope may often occur due to surface erosion. Cast-in place concrete and rubble work are the most widely used earth structure-based pressure supports that act as restraints against the collapse of the rock slope. In order to overcome the shortcomings of conventional retaining walls, a segmental grid retaining wall is being used with connects precasted segments to construct the wall. In this study, laboratory model test was conducted to estimate deformation behavior of segmental grid retaining wall with configuration of rear strecher, height and inclination of the wall. In order to examine the behavior characteristics of a segmental grid retaining wall, this research analyzes the aspects of spacial displacement through relative displacement according to change in the inclination of the wall. Also, the walls behavior according to the formation and status of the rear stretcher which serves the role of transferring the load from the header and the stretcher which make up the wall, the displacement of backfill materials in the wall, and the location of the maximum load were surveyed and the characteristics of displacement in the segmental grid retaining wall were observed. The test results of the segmental grid retaining wall showed that there was a sudden increase in failure load according to the decrease in the wall's height and the size of the in was greatly decreased. Furthermore, it revealed that with identical inclination and height, the structure of the rear stitcher did not greatly affect the starting point or size of maximum horizontal displacement, but rather had a stronger effect on the inclination of the wall.