• 제목/요약/키워드: Cut surface

검색결과 1,372건 처리시간 0.028초

소형 앵글 스핀들 공구의 절삭성능에 관한 연구 (Cutting Performance of a Developed Small-angle Spindle Tool)

  • 김진수;김용조
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.111-117
    • /
    • 2016
  • The cutting performance of a developed small-angle spindle tool was investigated with Al6061 using a TiAlN coated high-speed steel end mill. Up-cut and down-cut processes in a milling machine were carried out at the range of 1000-4000 rpm for spindle speed and 50-300 mm/min for feed rate. As a result, the highest cutting force in the Fx direction was obtained from the up-cut process when the spindle speed was 1000 rpm and the feed rate was 100 mm/min. In the Fy direction, the highest cutting force appeared in the up-cut process at a feed rate of 250 mm/min at the same spindle speed. Conversely, the lowest cutting force came out in the up-cut process at a spindle speed of 4000 rpm and a feed rate of 50 mm/min. As for surface finish, the finest surface roughness was obtained as Ra 0.7642 um at a spindle speed of 4000 rpm and a feed rate of 50 mm/min. Consequently, given the cutting performance of the developed small-angle spindle tool, we conclude that its use in industrial practice is feasible.

Improvement of Surface Integrity in Hard Turning With Sensitivity Analysis of Cutting Parameter

  • Kong, Jeong-Heung;Park, Man-Jin;Kim, Jin-Hyun;Jang, Dong-Young;Han, Dong-Chul
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.321-322
    • /
    • 2002
  • This paper presents study of effects of cutting parameters such as cutting speed, feed rate and depth of cut on the surface roughness in hard turning. Taguchi Method and linear regression model of design parameters were utilized to identify the controlling process parameters that can monitor the surface roughness in the hard turning operation. In the process optimization, experimental planning was performed using the orthogonal array and concept of the signal-to-noise ratio. Cutting parameters such as speed, feed rate, and depth of cut were selected as process parameters and the ANOVA analysis showed that feed rate and cutting speed had more effect on the roughness variation that depth of cut.

  • PDF

알루미늄 합금 6061에서 와이어 진동부가에 의한 와이어 컷 방전가공에 따른 표면 거칠기 특성 (I) (Characteristics of Surface Roughness Based on Wire Vibration and Wire-cut Electric Discharge Machining of Aluminum Alloy 6061 (I))

  • 류청원;최성대
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.59-66
    • /
    • 2015
  • The production of high value-added products requires efficient processing and this constant demand for complex shape processing has led to the need for hybrid processing. In this study, the surface characteristics of hybrid machining, which combines wire-cut E.D.M and vibration, are examined. The selected experimental parameters are verticality, waveform, amplitude, peak current and frequency. The experimental results provide a guideline for selecting reasonable machining parameters. Surface roughness was improved by increasing the amplitude of the vibration.

알루미늄 합금 6061에서 와이어 진동부가에 의한 와이어 컷 방전가공에 따른 표면 거칠기 특성 (III) (Characteristics of Surface Roughness According to Wire Vibration and Wire-cut Electric Discharge Machining of Aluminum Alloy 6061 (III))

  • 류청원;최성대
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.81-88
    • /
    • 2016
  • Recently, high-efficiency machining in the production of high-value products with complex shapes has constantly been required along with the need for hybrid machining. In this study, in addition to wire-cut Electric Discharge Machining (EDM) and vibration, we present the possibility of a hybrid process by carrying out an experiment with aluminum alloy, and the hybrid process determines the nature of the surface. The selected experimental parameters are waveform, amplitude, peak current, and two-dimensional (2D) vibration. The experimental results give the guideline for selecting reasonable machining parameters. The surface roughness was improved about 20% with increases in the amplitude of the vibration.

플라즈마 용사된 $\textrm{Cr}_2\textrm{O}_3$ 층의 연삭특성 (Grinding Characteristics of the Plasma-Sprayed $\textrm{Cr}_2\textrm{O}_3$ Coating Layer)

  • 김병희;서동수
    • 한국재료학회지
    • /
    • 제9권1호
    • /
    • pp.18-24
    • /
    • 1999
  • This study was performed to observe the surface roughness and microstructural change of the grinding surface of plasma sprayed $Cr_2$$O_3$coating layer. The experimental condition were particle size of diamond grinding stone, depth of cut, rotating speed and coolant feed. As a results, the grinding conditions influencing on the surface roughness and microstructure were depth of cut and the particle size of diamond grinding stone. In addition to the conversion of brittle-ductile fracture of grinding surface on depth of cut is $5~10\mu\textrm{m}$ and rotating speed was 100 r.p.m after grinding

  • PDF

적외선차단필터의 표면 검사를 위한 암시야 레이저산란에 대한 실험적 분석 (An Experimental Analysis on Dark-field Laser Scattering for the Surface Inspection of Infrared Cut-off Filters)

  • 김경범;한재철
    • 한국정밀공학회지
    • /
    • 제24권11호
    • /
    • pp.76-83
    • /
    • 2007
  • The dark-field laser scattering system has been developed to inspect surface defects in infrared cut-off filters and then laser scattering characteristics against the defects are investigated. The qualitative analysis for the reliable and accurate detection performance is described through the correlation between incident angles of a laser and viewing ones of a camera. In this paper, reliable and important information with laser scattering is given for the surface defect inspection of IR filters. Its performance has been verified through various experiments.

알루미늄 합금 6061에서 와이어 진동부가에 의한 와이어 컷 방전가공에 따른 표면 거칠기 특성(II) (Characteristics of Surface Roughness According to Wire Vibration Wire-cut Electric Discharge Machining of Aluminum Alloy 6061(II))

  • 류청원;최성대
    • 한국기계가공학회지
    • /
    • 제14권4호
    • /
    • pp.100-107
    • /
    • 2015
  • Recently, high-efficiency machining in the production of high-value products with a complex shape has constantly been required with the need for hybrid machining. In this study, in addition to the wire-cut E.D.M. and vibration used to present the possibility of a hybrid process by carrying out the aluminum alloy experiment, the hybrid process determines the nature of the surface. The selected experimental parameters are horizontality, waveform, amplitude, peak current, and frequency. The experimental results give guidelines for selecting reasonable machining parameters. The surface roughness was improved by about 20% with increases in the amplitude of the vibration.

Al 6061의 초정밀 절삭특성 (Ultra Precision cutting Characteristics for Al 6061)

  • 박상진
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.591-596
    • /
    • 2000
  • The needs of ultra precision machined parts is increase every days. But the experimental data of nonferrous metal is insufficient. The cutting behavior in micro cutting area is different from that of traditional cutting because of the size effect. Al6061 is widely used as optical parts such as LASER reflector's mirror or multimedia instrument. Al6061 opper is machined by ultra precision machine with natural diamond tool. From the experiment and discussion on the cutting force and worked surface roughness as the variable spindle speed, feed rate and depth of cut. As a result, the cutting force increases as the increasing depth of cut, but the worked surface roughness does not increase so much. The surface roughness is good when spindle sped is above 1200rpm, and feed rate is small. The influence of depth of cut is very small.

  • PDF

Downward and Upward Air Flow Effects on Fume Particle Dispersion in Laser Line Cutting of Optical Plastic Films

  • Kim, Kyoungjin
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.37-44
    • /
    • 2020
  • In improving laser cutting of optical plastic films for mass production of optoelectronics display units, it is important to understand particle contamination over optical film surface due to fume particle generation and dispersion. This numerical study investigates the effects of downward and upward air flow motions on fume particle dispersion around laser cut line. The simulations employ random particle sampling of up to one million fume particles by probabilistic distributions of particle size, ejection velocity and angle, and fume particle dispersion and surface landing are predicted using Basset-Boussinesq-Oseen model of low Reynolds number flows. The numerical results show that downward air flow scatters fume particles of a certain size range farther away from laser cut line and aggravate surface contamination. However, upward air flow pushes fume particles of this size range back toward laser cut line or sucks them up with rising air motion, thus significantly alleviating surface contamination.

레이저 절단품질에 미치는 절단압력의 영향(2) (절단압력과 절단품질간의 상관관계) (Influence of Cutting Pressure on Laser Cut Quality (Relationship between Cutting Pressure and Cut Quality))

  • 양영수;나석주;김원배;김태균
    • 한국정밀공학회지
    • /
    • 제5권1호
    • /
    • pp.63-70
    • /
    • 1988
  • Laser cutting system uses a gas jet to remove the molten or varpozed material from the workpiece. The quality of the laser cut can be strongly influenced by the gas flow charac- teristics formed through the nozzle. Laser cutting experiments were carried out for SS41 and SUS 304 to investigate the relationship between cut quality and cutting pressure. The cutting speed, nozzle pressure and nozzle to workpiece distance were also considered. The cut specimens were inspected by various manners such as dross observation, surface roughness test and kerf width measurement. Based on the data of pressure measurement on workpiece and the results of cut surface inspection, the influence of the considered cutting conditions on cut quality could be evaluated. The results of this study will be valuable in planning the optimal laser cutting process and in designing the laser cutting nozzle.

  • PDF