• 제목/요약/키워드: Cut surface

검색결과 1,375건 처리시간 0.028초

전극선 성분 변화에 따른 냉간금형용강의 와이어방전가공 특성 (Characteristics of Wire EDM for Cold Die Steel due to the Different Wire Electrode Component)

  • 왕덕현;정순성
    • 한국기계가공학회지
    • /
    • 제2권2호
    • /
    • pp.98-105
    • /
    • 2003
  • In the experimental study, wire EDM was conducted for cold die steel by changing the Wire electrode, peak discharge current and number of finish cut. From the micro structure analysis of SEM photographs, the size of irregular welded and added component on the EDMed surface is decreasing and size of EDMed plane surface is increasing as the decreasing peak current and increasing number of finish cut. From the analysis of coating effect, Zn component is highly contained in Br and Zn Wire EDMed surface and copper component is highly contained in Br and Al wire EDMed surface. Hardness values are Increasing as the increasing peak current and decreasing the number of finish cut The value of hardness is decreasing as Cu, Al, Zn and Br wire electrode because of the residual austenite effect of solid solution copper on solidification, and finally EDMed surface has the highest hardness values for every wire electrode. Yield strength values becomes larger and bending strength values become smaller due to the increasing the hardness. These results are increased as increasing brittleness with hardness.

  • PDF

평면연삭조건이 가공탄성계수에 미치는 영향 (Effects of the Surface Grinding Conditions on the Machining Elasticity Parameter)

  • 임관혁;김강
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.26-32
    • /
    • 1998
  • The grinding force generated during the grinding process causes an elastic deformation of the workpiece, grinding wheel, and machine system. Thus, the true depth of cut is always smaller than the apparent depth of cut. This is known as machining elasticity phenomenon. The machining elasticity parameter is defined as a ratio between the true depth of cut and the apparent depth of cut. It is an important factor to understand the material removal mechanism of the grinding process. To increase productivity, the value of this machining elasticity parameter must be large. Therefore, it is essential to know the characteristics of this parameter. The objective of this research is to study the effect of the major grinding conditions, such as table speed and depth of cut, on this parameter experimentally. Through this research, it is found that this parameter value is increasing when the table speed is decreasing or the depth of cut is increasing. Also, this parameter value depends on the grinding mode (up grinding, down grinding).

  • PDF

측면 연삭가공에 있어서 퀄축강성변화가 가공현상에 미치는 현상 (The Effect on the Machining Phenomenon due to the Change of the Quill Rigidity in a Side-Cut Grinding)

  • 김창수;서영일;이종찬;정성환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.33-37
    • /
    • 1995
  • A side-cut grinding generates a machining error by the decrease of the quill rigidity. In this paper, The effect on the grinding force, machining error and surface roughness due to the change of the quill rigidity is investigated experimentally. The slenderness ratio of the quill is a significant factor to analyse the change of the grinding force and machining error.

  • PDF

능선 궤적법을 이용한 볼엔드밀 가공면 해석 (Analysis of Machined Surfaces by Ball-end Milling using the Ridge Method)

  • 정태성;남성호;박진호;양민양
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.51-60
    • /
    • 2004
  • Ball-end milling is one of the most common manufacturing processes for the parts with sculptured surface. However, the conventional roughness model is not suitable for the evaluation of surface texture and roughness under highly efficient machining conditions. Therefore, a different approach is needed for the accurate evaluation of machined surface. In this study, a new method, named ‘Ridge method’, is proposed for the effective prediction of the geometrical roughness and the surface topology in ball-end milling. Theoretical analysis of a machined surface texture was performed considering the actual trochoidal trajectories of cutting edge. The characteristic lines of cut remainder are defined as three-types of ‘Ridges’ and their mathematical equations are derived from the surface generation mechanism of ball-end milling process. The predicted results are compared with the results of conventional method. The agreement between the results predicted by the proposed method and the values calculated by the simulation method shows that the analytic equations presented in this paper are useful for evaluating a geometrical surface roughness of ball -end milling process.

연삭가공특성에 미치는 연삭입자 최대물림깊이의 영향 (Effects of the maximum grit depth of cut on grinding characteristics)

  • 허인호
    • 한국생산제조학회지
    • /
    • 제8권5호
    • /
    • pp.63-69
    • /
    • 1999
  • In tis study the effects of the maximum grit depth of cut on the grinding characteristics were investigated. They are AE signals produced during grinding processes have been studied to find out the appropriate AE parameters for assessing grinding processes. SM45C steel has been ground under the conditions yielding removal rate of workpiece 100, 200,300, and 400m{{{{ {m }^{3 } }}}}/min which was achieved by altering workpiece velocity(v) and apparent depth of cut(Z). According to the experimental result the value of surface roughness increases but grinding power energy rate of AE signal(AErmas2) and specific grinding energy consumed decrease as increasing the maximum grit depth of cut.

  • PDF

연삭가공특성에 미치는 연삭입자 최대물림깊이의 영향 (Effects of the maximum grit depth of cut on grinding characteristics)

  • 김효정;허인호;우성대;이영문
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.15-20
    • /
    • 1999
  • In this study, the effects of the maximum grit depth of cut on the grinding characteristics were investigated. And AE signals produced during grinding processes have been studied to find out the appropriate AE parameters for assessing grinding processes. S45C steel has been ground under the conditions yielding removal rate of workpiece, 100, 200, 300 and 400rnm$^3$/min which was achived by altering workpiece velocity($\upsilon$) and apparent depth of cut(Z). According to the experimental results, the value of surface roughness increases but grinding power, energy rate of AE signal(AErms$^2$) and specific grinding energy consumed decrease with increase of the maximum grit depth of cut.

  • PDF

유연성 디스크 연삭가공 평면가공구간에 대한 연구 (A Study on the Flat Surface Zone of the Flexible Disk Grinding System)

  • 유송민
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.125-132
    • /
    • 2007
  • Inherent dynamic interaction between flexible disk and workpiece creates partially non-flat surface profile. A flat zone was defined using minimum depth of engagement. Several key parameters were defined to explain the characteristics of the zone. Process conditions including disk rotation speed, initial depth of cut and feed speed were varied to produce product profile database. Correlation between key factors was examined to find the characteristic dependencies. Trends of key parameters were displayed and explained. Higher flat zone ratio was observed for lower depth of cut and higher disk rotation speed. Ratio of minimum depth of cut against target depth of cut increased for higher feed speed and disk rotation speed but was insensitive to the depth of cut variation. The process transition was visualized by continuously displaying instantaneous orientation of the deflected disk and the location of key parameters were clearly marked for comparison.

Wire-cut 방전가공에서 가공조건이 표면거칠기에 미치는 영향

  • 유중학;최만성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 춘계학술대회 논문집
    • /
    • pp.109-114
    • /
    • 1992
  • This paper describes an effect of operating condition on surface roughness in wire-cut FDM. The experimental values of surface roughness were measured by the test pieces under the condition of changing. On time, Off time, and Feed rate after fixing other conditions. The material of the test pieces is the alloy tool steel(STD 11) and was used after heat treatment. The results are as follows: 1. The surface roughness became rapidly worse according to the increase of On time and Feed rate. 2. The surface roughness became slowly better according to the increase of Off time.

저탄소 강판의 레이저 절단에서 자동 초점거리 추적이 절단 품질에 미치는 영향 (Effects of an Auto-tracking of the Focal Distance on the Quality of the Cut Part in the Laser Cutting of a Low Carbon Sheet)

  • 안동규;변경원;유영태
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.101-107
    • /
    • 2007
  • The objective of this research work is to investigate into effects of an auto tracking of the focal distance on the quality of the cut part in the cutting of a low carbon sheet using a high-power CW Nd:YAG laser. An auto-tracking system with a capacitance based distance control loop has been employed to perform a real control of the focal distance. In order to examine the influence of the auto-tracking of a focal distance on the optimum focal distance, the kerfwidth, surface roughness and the formation of the cut section, several linear cutting tests have been carried out using the auto-tracking system. The results of experiments have been shown that the optimum focal distance is 0.9mm. In addition, it has been shown that the variation of kerfwidth and the surface roughness of the cut part with control of the focal distance are reduced 40-80% and 30-55% in comparison with those of the cut part without tracking of the focal distance. From the results of the experiments, it has been found that the real time tracking of the focal distance can improve the part quality.