• Title/Summary/Keyword: Cut slopes

Search Result 221, Processing Time 0.024 seconds

A Study on the Use of Wood Waste for Slope Revegetation Techniques (임목폐기물 파쇄칩을 활용한 녹화기술의 비탈면 적용성에 관한 연구)

  • Koh, Jeung-Hyun;Hur, Young-Jin;Lee, Yong-Koo;Kim, Nam-Choon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.1
    • /
    • pp.47-56
    • /
    • 2010
  • The main objectives of this comparative study were 1) to quantify the potential contribution of wood chips to revegetation on the cut slope in a constructed area, 2) to compare the floristic similarity of species composition whether existing of wood chips in the soil media or not. Wood chips were combined with soil media in the ratio of 30%. The thin layer (1 cm, 3 cm) soil media revegetation methods and the thick layer (10 cm) soil media revegetation method were constructed on the cut slopes by machineries respectively. Also, comparative experiments the existence of wood chips in the soil media were conducted to evaluate the effects of wood chips on revegetation works. The total size of quadrat was $300m^2$ ($100m^2{\times}3$). The results of monitoring for 3 years on cut slopes were as follows: 1) All the quadrat existed in the proper range for vegetation. 2) Species richness of quadrat including wood chips was 10% more than those of commercial soil medias. 3) The coverage rates of quadrat including wood chips were similar or superior to those of conventional methods. It can be concluded that the use of wood chips would be effective to promote establishment of diverse landscape and vegetation. However, it behooves to continue monitoring on succession of vegetation for ecological restoration. Finally, adequate wood chips deposit and gathering methods should be studied properly.

Biodiversity, Spore Density and Root Colonization of Arbuscular Mycorrhizal Fungi at Expressway Cut-slopes in Korea

  • Lee, Kyung Joon;Lee, Kyu Hwa;Tamolang-Castillo, Evangeline;Budi, Sri Wilarso
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.539-547
    • /
    • 2009
  • This study was conducted to investigate the arbuscular mycorrhizal fungal biodiversity, spore density and root colonization in relation to site ages at expressway cut-slopes in Korea. Stabilization of exposed surface involved soil amendments and spraying seed mixture of turf grasses and/or nitrogen-fixing shrub species. Eighteen sites were selected with varying ages (2 to 16 years). Soil samples collected in October from each site were analyzed for fungal diversity and spore counts. Fine root samples from the plants were assayed for fungal colonization. Of the total 37 plants inspected in the sites, 26 species had endomycorrhizal colonization with an average root colonization rate of 18%, and with a range from 1 to 67%. The average endomycorrhizal colonization rate of initially introduced Festuca arundinacea which became the most dominant grass in later stage showed 22.8%, while that of Lespedeza bicolor which became the most dominant woody species were 21.6%. Naturally-invading Robinia pseudoacacia showed higher colonization rate in the old sites. Although site age did not show significant effects on fungal diversity, the root colonization rates of initially introduced plants decreased with the site aging, while those of invading plants increased with aging of the sites. The soil chemical properties, pH, N, and P contents, were negatively correlated with spore density, root colonization and endomycorrhizal species diversity. A total of forty arbuscular mycorrhizal fungal species in seven genera were identified. Of the 40 species, Acaulospora lacunosa, Glomus aggregatum, Glomus constrictum, Scutellospora erythropa, and Acaulospora spinosa were the five most dominant species in the decreasing order.

Influences of Environmental Factors on Soil Erosion of the Logging Road in Timber Harvested Area (성숙임목벌채지(成熟林木伐採地)에서 운재로(運材路)의 침식(浸蝕)에 미치는 환경요인(環境要因)의 영향(影響))

  • Park, Jae-Hyeon;Woo, Bo-Myeong;Jeong, Do-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.239-246
    • /
    • 1995
  • This research aimed at the contribution to obtaining the scientifical data which were required for planning she environmentally sound and sustainable management, particularly in the field of the logging road construction. Main natural environmental variables including natural vegetation, rainfall, soil runoff were measured in the logging road on-sites and analysed. This project was carried out at the (mt.)Paekunsan Research sorest of Seoul National University, located in Gwangyang, Chollanam-do in southern part of Korea, from 1993 to 1994. 1. The explanatory variables for erosion and sedimentation on logging road surface were accumulated rainfall, erosion distance, cross-sectional gradient, and soil hardness. The erosion and sedimentation on logging road was increasing positively in proportion to the accumulated rainfall, soil distance from starting point of the logging road, and cross-sectional gradient. 2. On cut-slope of logging road, cut-slope shape, part of the slope, plant coverage, soil hardness, sand content, accumulated rainfall, clay content, and silt content were effective factors. Cut-slope erosion and sedimentation on logging roam increased as with the lower plant coverage, the lower accumulated rainfall, the high sand content in the soil. 3. On fill-slope of logging road, there were three significant variables such as total rainfall and number of rainfall-storm. Fill-slope erosion and sedimentation had a positive correlation with the amount of rainfall, the number of rainfall, the soil hardness. 4. The total erosion and sedimentation on logging road were $5.04{\times}10^{-2}m^2/m^2$ in logging road construction year, $7.37{\times}10^{-2}m^2/m^2$ in next year. The erosion and sedimentation on logging road surface were 32.7% of total erosion and sedimentation on Logging road in construction year, and 57.1% in next year, respectively. The erosion and sedimentation on cut-slopes were 30.4% on logging road in construction year, fill-slopes of total erosion and sedimentation and 21.0% in next year, respectively. The erosion and sedimentation on fill-slopes were 36.9% on logging road in construction year, 21.9 in next year. To decrease the erosion and sedimentation at the logging road from the beginning stage of construction, the effective revegetation works should be implemented on the cut-slope and fill slopes, and erosion control measures such as optima. road design must be constructed on read surface.

  • PDF

Damage Conditions and Assessment for Cut Slope Structures due to Acid Rock Drainage (산성암반배수에 의한 절취사면 구조물의 피해 현황과 평가)

  • Lee Gyoo Ho;Kim Jae Gon;Park Sam-Gyu;Lee Jin-Soo;Chon Chul-Min;Kim Tack Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.83-92
    • /
    • 2005
  • The aim of this study was to investigate damage conditions of cut slope structures due to acid rock drainage (ARB) and to assess the acid production potential of various rocks. Acid rock drainage is produced by the oxidation of sulfide minerals contained in coal mine zone and mineralization belt of Pyeongan supergroup and Ogcheon group, pyrite-bearing andesite, and Tertiary acid sulfate soils in Korea. Most of cut slopes producing ARB have been treated with shotcrete to reduce ARD. According to the field observations, ARD had an adverse effect on slope structures. The corrosion of shotcrete, anchors and rock bolts and the bad germination and growth diseases of covering plants due to ARD were observed in the field. The concentration of heavy metals and pH of ARD from cut slope exceeded the environmental standard, indicating a high potential of environmental pollution of surrounding soil, surface water and ground water by the ARD. According to acid base accounting (ABA) of the studied samples, hydrothermally altered volcanic rocks, tuffs, coaly shales, tailings of metallic mine had a relatively high potential of acid production but gneiss and granite had no or less acid production potential. It is expected that the number of cut slopes will increase hereafter considering the present construction trend. In order to reduce the adverse effect of ARD in construction sites, we need to secure the data base for potential ARD producing area and to develop the ARD reduction technologies suitable.

Evaluation for Installation and Drain Performance of Mountain Side Ditch in Road Cut Slopes (도로 절토사면 산마루측구 배수성능에 따른 사면안정성 평가)

  • Hwang, Young-Cheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.4
    • /
    • pp.73-79
    • /
    • 2004
  • Mountain side ditch is constructed at the top of cutting slopes around road and it drains the surface water that flowed from upper part. Mountain side ditch is constructed to keep away the influx of the surface water into cutting faces. However, if Mountain side ditch is constructed on the top of cutting slopes, it is cause of trouble. For example, difficulty of quality control and lack of drainage faculty. Therefore, the faculty and establishment propriety of mountain side ditch are evaluated seriously, according to the condition of ground, topography and rainfall in this paper. Results from the study for the numerical analysis of effect of mountain side ditch indicate that safety factor is enlarged about 3% at rainfall.

  • PDF

The Factors Considered for Disaster Prevention in Surface Investigation of Rock Slope (암반사면 표면조사시 재해 예방을 위한 고려요인)

  • Le, Seok-Jin;Jun, Sung-Yong;Lee, Joo-Ho;Choi, Seong-Rok
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.2
    • /
    • pp.75-83
    • /
    • 2009
  • When the exposed surface of rock slopes investigated, various factors have not been considered. The factors required to be considered include the vlume swelling of rock caused by stress release at the fault zone, unexposed discontinuities in the earth and so on. Also, rock slope failure occurs sometimes due to these factors. In this paper, we intend to help engineers to judge about the stability of similar new cutting-slopes or the maintenance of already cut-slope, so that they can consider these factors.

  • PDF

A Study on Application Test of Cut-slope Revegetation Measures with Organic Soil Amendment Materials (유기질계 토양개량재를 이용한 절토비탈면 녹화공법 적용시험 연구)

  • Jeon, Gi-Seong;Woo, Kyung-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.3
    • /
    • pp.13-20
    • /
    • 2005
  • This study was conducted to suggest the ecological restoration methods of the decomposed granite cut-slope by organic soil amendment materials. Field test carried out for the cut-slope with organic soil amendment materials method and other three revegetation methods in Cheongwon. Test revegetation plants were Festuca arundinacea, Lolium perenne, Dactylis glomerata, Lespedeza cyrtobotrya, and Arundinella hirta. The result of this study can be summarized as follows; 1. The soil hardness, the soil acidity, and the soil humidity of organic soil amendment materials method were at a suitable value for plants growth. And it was better as compared with other three revegetation methods of cutting-rock slopes. 2. The result of toxic substance investigation, all items were at a suitable for standard law. 3. During one year after seeding, most plants germinated and especially Festuca arundinacea and Dactylis glomerata grows well. Seedling numbers were 336.7 per $m^2$(after 6 months), 183.3 per $m^2$(after 10 months), and 353.3 per $m^2$(after 6 months). Ten months later after seeding, plants showed 80% ground coverage. Visual rate, plant height, and growth rate were excellence, Also, high plant growth in spring better than autumn.

Geosynthetic Reinforced Soil Method for Restoration of Debris Flow Failure Slopes (쇄설성 유동파괴 사면 복구를 위한 토목섬유 보강토 공법)

  • Cho Yong-Seong;Kim You-Seong;Park Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.93-101
    • /
    • 2005
  • The formation of slopes is unavoidable under the special circumstance of Korea where $7%$ of the whole area are composed of mountains and civil engineering projects such as road and site developments are increasing with industrial development and horizontal expansions of urban area. Stability of slopes is one of quite important issues under special meteorological characteristics that over two-thirds of annual average rainfall is concentrated in summer season and the localized torrential downpour is getting more frequent recently. As a result of these circumstances, partial slope failures by debris flow of the high water content soils occur frequently in cut soil slopes. In this case of debris flow slope failure, slope declination method is selected fur the stable recovery because it is impossible to recover entirely by existing recovery methods. Seeding or special grass planting methods are followed separately without exception. The method by which entire recover with bigger stability ratio would be possible and grass planting work would be done simultaneously is developed. For debris flow failure slopes, this study secured the safety of slopes by preventing the inflow of rainwater and scour using geosynthetics-reinforced embankment, and created nature-friendly slopes by planting trees on the slopes.

Tendency for Vegetation Recovery Years after Forest Road Construction (임도 개설 후 경과년수에 따른 식생 회복 경향)

  • Sung-Yeon Lee;Chung-Weon Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.3
    • /
    • pp.327-338
    • /
    • 2024
  • Forest road construction can degrade the physical and biological environments of forest ecosystems. Although this degradation may be temporary, some research has shown the potential for the long-term recovery of the original ecosystem. This study investigated changes in communities' structures over time to understand the process of ecosystem change following road construction. Data were collected from 63 plots, each measuring 25m2, in Buyeo-gun, Chungcheongnam-do, including plots from roads constructed in 1998 (25 years elapsed), 2021 (two years elapsed), and 2022 (one year elapsed), using phytosociological methods. The results showed that the importance of the values of Pinus densiflora an d Quercus variabilis in the tree and subtree layers of the 25-year-old cut slopes were similar to those of the control plots, indicating the significant recovery of the original ecosystem's structure and function after 25 years. Species diversity analysis revealed the higher evenness and lower dominance of the cut slopes and road surfaces attributed to the high dominance of species such as Arundinella hirta and Miscanthus sinensis. The community similarity index and detrended correspondence analysis (DCA) indicated that the control plots, all the edge plots, and the 25-year-old cut slopes could be considered part of the same community. In conclusion, forest roads in place for 25 years appear to have been restored to the level of the original ecosystem. These findings can serve as valuable ecological data for understanding the vegetation recovery process at future forest road construction sites.

Development of Improved Rock Bolt for Reinforcement of Fracture Zone in Slope and Tunnel (사면 및 터널에서의 암반 파쇄대 보강을 위한 개량형 록볼트 개발)

  • Kim, Soo-Lo;Kim, Jong-Tae;Park, Seong-Cheol;Kim, Tae-Heok;Kwon, Hyun-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2010
  • There are many slopes generally developed by excavation and cut slope with small steps on massive slopes of roads. Especially these cut slopes which excavating around fault fracture zone need a reinforcement technology in order to ensure safety. In the case of slope excavation, it is difficult to use the existing slope support at fracture zone because of geological characteristics. Especially the factor of safety decreases significantly due to the movement of blocks in bed rocks and the expansion of interspace of discontinuous planes in fractured zones caused by excavation. Thus an efficient reinforcement technique in accordance with geological properties of fracture zones needs to be developed because the existing slope support has a restricted application. Therefore it is necessary to develop the specialized rock bolt technique in order to ensure an efficient factor of safety for anomalous fracture zones in slopes and tunnels. The purpose of this study is to develop newly improved rock bolt to increase a supporting effect of the swellex bolt method used recently as a friction type in fracture zones.