• Title/Summary/Keyword: Cut Fiber

Search Result 293, Processing Time 0.025 seconds

수정 Eshelby등가 개재물 방법을 이용한 단섬유 금속 복합재료의 열적잔류응력의 해석에 관한 연구

  • 손봉진;이준현;김문생
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.660-665
    • /
    • 1993
  • An elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two special cases of fiber misorientation ; two-dimensional in-plane and three-dimensional axisymmetric. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is nuque in that it is able to account for interactions among fibers. The model is more general than past models and it is able to treat prior analyses of the simpler composite systems as extram cases. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for both in-plane and axisymmetric fiber misorientation. Fiber volum fraction, aspect ratio, and disturbution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stress than fiber distrubution type for both in-plane and axisymmetric misorientation.

  • PDF

Dynamic Deformation Characteristics of Fiber Mixed Silty Sand (섬유보강 실트질 모래의 동적 변형특성)

  • Heo, Joon;Chang, Pyoung-Wuck
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.59-70
    • /
    • 2005
  • A series of resonant column test was performed to investigate the dynamic deformation characteristics of silty sand soils mixed with polypropylene fibrillated type fiber. Results show that optimum mixing ratios were $0.2\%$ for 19mm of cut fiber for shear modulus and $0.1\%$ for 60mm cut fiber fur damping ratio. As shear strain was increased, normalized values of shear modulus (G(Reinforced)/ G(Unreinforced)) of fiber reinforced soil were increased up to $10^{-3}\%\~10^{-1}\%$ ranges. However, normalized damping ratio (D(Reinforced/D(Unreinforced)) was diminished with an increase in strain beyond $10^{-3}\%\~10^{-1}\%$ for the damping capacity of soils mixed with fiber. Normalized shear modulus $(G/G_{max})$ obtained from the test was plotted in the chart suggested by Seed and Idriss. The shear modulus of silty sand was located between sand and gravel curves.

Cut-off Grinding Characteristics of the Carbon Fiber Epoxy Composite Materials (탄소 섬유 에폭시 복합재료의 절단 연삭 특성)

  • Kim, Po-Jin;Choe, Jin-Gyeong;Lee, Dae-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.338-346
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites are frequently required cutting or grinding due to the dimensional inaccuracy for precision machine elements . During the composite machining operations such as cutting and grinding, the temperature at the cutting point may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the cutting point during cut-off grinding of carbon fiber epoxy composites was measured. The cutting force and surface roughness were also measured to investigate the cut-off grinding characteristics of the composites. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed and feed rate. From the experimental investigation, the optimal conditions for the composite cut-off grinding were suggested.

A Study on the Use of a Continuous Fiber Soil Reinforcement System to Revegetate a Cut Slope (비탈면의 생태복원을 위한 연속섬유보강토의 적용성에 관한 연구)

  • Koh, Jeung-Hyun;Hur, Young-Jin;Lee, Yong-Gu;Kim, Nam-Choon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.3
    • /
    • pp.73-83
    • /
    • 2010
  • A technology using continuous fiber soil reinforcement system for the creation of ecological restoration in a damaged area has been developed and introduced. The continuous fiber soil reinforcement system (Geofiber system) is an environmentally friendly slope protection technique that continuous fiber soil reinforced layers are constructed with green plantation on cut slope. The characteristics of this system in terms of the strength and hydraulic performance, and the vegetation were investigated in this study. The main objectives of this comparative study was to quantify the potential contribution of geofiber system for the revegetation on the cut slope in a damaged area. A Geofiber system was constructed to reinforce the lower layer of slopes and revegetation methods including wood chips were carried out on the upper layer by machineries. The results of monitoring during 3 years on cut slopes were as follows : 1) All the quadrat existed in the proper range for vegetation. 2) Species richness was 4.4 (site-1) and 18.5 (site-2) respectively. 3) The averaged coverage rates of quadrats was 90%. It is remarkable that the continuous fiber soil reinforcement system would be capable of applying to a damaged area and also would serve maintaining a healthier environment for floras. However, it behooves to continue monitoring on succession of vegetation for ecological restoration.

Fiber orientation distribution of reinforced cemented Toyoura sand

  • Safdar, Muhammad;Newson, Tim;Waseem, Muhammad
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.67-73
    • /
    • 2022
  • In this study, the fiber orientation distribution (FOD) is investigated using both micro-CT (computerized tomography) and image analysis of physically cut specimens prepared from Polyvinyl Alcohol (PVA) fiber reinforced cemented Toyoura sand. The micro-CT images of the fiber reinforced cemented sand specimens were visualized in horizontal and vertical sections. Scans were obtained using a frame rate of two frames and an exposure time of 500 milliseconds. The number of images was set to optimize and typically resulted in approximately 3000 images. Then, the angles of the fibers for horizontal sections and in vertical section were calculated using the VGStudio MAX software. The number of fibers intersecting horizontal and vertical sections are counted using these images. A similar approach was used for physically cut specimens. The variation of results of fiber orientation between micro-CT scans and visual count were approximately 4-8%. The micro-CT scans were able to precisely investigate the fiber orientation distribution of fibers in these samples. The results show that 85-90% of the PVA fibers are oriented between ±30° of horizontal, and approximately 95% of fibers have an orientation that lies within ±45° of the horizontal plane. Finally, a comparison of experimental results with the generalized fiber orientation distribution function 𝜌(θ) is presented for isotropic and anisotropic distribution in fiber reinforced cemented Toyoura sand specimens. Experimentally, it can be seen that the average ratio of the number of fibers intersecting the finite area on a vertical plane to number of fibers intersecting the finite area on a horizontal plane (NVtot/NHtot) cut through a sample varies from 2.08 to 2.12 (an average ratio of 2.10 is obtained in this study). Based up on the analytical predictions, it can be seen that the average NVtot/NHtot ratio varies from 2.13 to 2.17 for varying n values (an average ratio of 2.15).

A STUDY ON THE CUT-OFF CONDITION OF THE FUNDAMENTAL MODE IN MONOMODE FIBERS (단일 모드 FIBER에서 기본 MODE의 차단파장 조건에 관한 연구)

  • 김상준;김형태;김기대
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1986.10a
    • /
    • pp.23-27
    • /
    • 1986
  • In this paper, The loss spectra between 1.1um and 1.7um were measured by cut-back method using tungsten-halogen lamp, a grating monochramator and an InGaAs detector. Typical fiber lengths measured were 30 meter. This result represent a further contribution to monomode fiber design and has been applied to come common profimes that are under study to optimize the fiber performance. It is very important that the parameter a. were designed more exactly and transmission of LPol mode in 1.55um. Therefore, Fiber designer have to be aware of the fact that this coupling loss and bending loss.

  • PDF

Highly sensitive temperature sensor based on etched fiber with thermally expanded core (식각된 열확산 코어 광섬유를 이용한 고감도 온도 센서)

  • Kim, Kwang-Taek;Song, Hyun-Suk;Shin, Eun-Soo;Hong, Ki-Bum
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.263-268
    • /
    • 2006
  • We have demonstrated a highly sensitive temperature sensor using an etched single mode fiber with a thermally expanded core region. Large core size of thermally expanded core facilitates access to evanescent wave by the wet etching. The etched region was surrounded by a low dispersive external medium with high thermo-optic coefficient. Due to the large difference between the dispersion property of the fiber and that of the external medium, the device reveals a cut-off properties at spectral region. The cut-off wavelength was shifted by the variations of the environmental temperatures because of thermo-optic effect of the external medium. The sensitivity of the fabricated device was found to be $45nm/^{\circ}C$.

Fatigue Crack and Delamination Behavior in the Composite Material Containing n Saw-cut and Circular Hole (I) - Aramid Fiber Reinforced Metal Laminates - (소컷 및 원공 주위의 피로균열 형태변화와 층간분리거동 (I) - 아라미드섬유 강화 금속적층재의 경우 -)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.58-65
    • /
    • 2003
  • The aramid fiber reinforced metal laminates(AFRMLs) used for the wing part fair flight suffer the cyclic bending moment of variable amplitude during service. The fatigue crack propagation and delamination behavior in AFRMLs containing a saw-cut and circular hole was investigated using the average stress criterion(ASC) model. Mechanical tests were carried out using the cyclic bending moment of 4.9 N . m and delamination was observed by ultrasonic C-scan images. In case of AFRMLs containing a saw-cut fatigue crack propagated in aluminum matrix, inducing delamination. However, in case of AFRMLs containing a circular hole, delamination formed with two types under cyclic bending moment of 4.9 N . m. First, delamination formed along the fatigue crack in aluminum matrix. Second, delamination formed without any fatigue crack around the circular hole. Therefore, delamination was formed depending on the stress distribution near the circular hole.

Effect of a fall cut on dry matter yield, nutritive value, and stand persistence of alfalfa

  • McDonald, Iryna;Min, Doohong;Baral, Rudra
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.799-814
    • /
    • 2021
  • Information is lacking about the effect of date of a fall cut of alfalfa (Medicago sativa L.) on dry matter yield (DMY), forage nutritive value, and stands persistence. The objective of this study was to determine the effect of timing of a fall cut on DMY, forage nutritive value and stand persistence of three alfalfa varieties: low-lignin Hi-Gest 360, Roundup Ready Tonica, and conventional Gunner in Northeastern Kansas in the United States. The field study was carried out by splitting plot in randomized complete block design with four replications. The harvesting data of different maturity stages were collected in each year from 2015 to 2018. Three cuts were harvested based on the stage of maturity, and the last (fourth) cut was done on September 15, September 30, October 15, and October 30 of each year. The persistence of the alfalfa stands was determined each fall after the last cut, and each spring after the first cut, by counting the number of live plants in a randomly placed quadrat in each plot. Alfalfa cut on September 15 and September 30 had a higher stand persistence compared to alfalfa cut on October 15 and October 30. The DMY of the first cut in 2016 was significantly higher in roundup ready than the low-lignin alfalfa variety. In the second cut, DMY was significantly higher in conventional alfalfa than the roundup ready. There were no significant differences in DMY between alfalfa varieties in the rest of seasonal cuttings in 2016 and 2017 and annual total yield in both years. In general, low lignin alfalfa variety had higher crude protein and relative feed value and lower acid detergent fiber and neutral detergent fiber contents than those in roundup ready and conventional alfalfa varieties. On average, nutritive value of alfalfa was generally affected by last cutting dates in 2017. Based on 3-year data the last cutting of alfalfa in the fall could be done by September 30-October 15 without harmful effect on DMY.

A Theoretical Study on Quantitative Prediction and Evaluation of Thermal Residual Stresses in Metal Matrix Composite (Case 1 : Two-Dimensional In-Plane Fiber Distribution) (금속기지 복합재료의 제조 및 성형시에 발생하는 열적잔류응력의 정량적 평가 및 예측에 관한 이론적 연구 (제 1보 : 강화재가 2차원 평면상태로 분포하는 경우))

  • Lee, Joon-Hyun;Son, Bong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.17 no.2
    • /
    • pp.89-99
    • /
    • 1997
  • Although discontinuously reinforced metal matrix composite(MMC) is one of the most promising materials for applications of aerospace, automotive industries, the thermal residual stresses developed in the MMC due to the mismatch in coefficients of thermal expansion between the matrix and the fiber under a temperature change has been pointed out as one of the serious problem in practical applications. There are very limited nondestructive techniques to measure the residual stress of composite materials. However, many difficulties have been reported in their applications. Therefore it is important to establish analytical model to evaluate the thermal residual stress of MMC for practical engineering application. In this study, an elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two-dimensional in-plane fiber misorientation. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is unique in that it is able to account for interactions among fibers. This model is more general than past models to investigate the effect of parameters which might influence thermal residual stress in composites. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for in-plane fiber misorientation. Fiber volume fraction, aspect ratio, and distribution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stresses than fiber distribution type for in-plane misorientation.

  • PDF