• Title/Summary/Keyword: Custom-tailored product

Search Result 4, Processing Time 0.019 seconds

Grouping Algorithm for Custom-tailored Products (주문헝제품의 생산을 위한 집합화 알고리즘의 개발)

  • 김승엽;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.2
    • /
    • pp.131-139
    • /
    • 2002
  • Custom-tailored products always vary their sizes and shapes to satisfy the customers' tastes and requirements but they have to be fabricated as fast as possible when ordered. One way to solve this problem is to prepare several representative products in advance and each custom-tailored product is generated by machining the closest representative product. To realize this approach, it would be necessary to be able to group the products into several groups each of which has a representative product. Once the similar products are identified to be grouped, the representative shape can be generated such that all the products in the group can be made by machining the representative product. The custom-tailored products considered in this work have similar shapes but different sizes. Since these products have free surfaces, that are hard to be compared, their convex hulls are used for the grouping. Among all the products to be grouped, one product is chosen as a base shape. The shape and overall similarity values between the base shape and the remaining shapes are calculated as their convex hulls are rotated virtually. By calculating these similarity values at each rotation, the optimal alignment of the reference shape with respect to the base shape is determined. Overall similarity value at this optimal alignment is used as a measure for grouping. A prototype system based on the proposed methodology has been implemented and used to group the shoe-lasts for custom-tailored shoes.

Similarity Measurement of 3D Shapes Using Ray Distances (Ray distance를 이용한 3차원 형상의 유사성 판단)

  • 황태진;정지훈;오헌영;이건우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.159-166
    • /
    • 2004
  • Custom-tailored products are meant by the products having various sizes and shapes to meet the customer's different tastes or needs. Thus fabrication of custom-tailored products inherently involves inefficiency. To minimize this inefficiency, a new paradigm is proposed in this work. In this paradigm, different parts are grouped together according to their sizes and shapes. Then, representative shape of each group is derived and it will be used as the work-piece from which the parts in the group are machined. Once a new product is ordered, the optimal work-piece is selected through making similarity comparisons of new product and each representative shape. Then an effective NC tool-path is generated to machine only the different portions between the work-piece and the ordered product. The efficient machining conditions are also derived from this shape difference. By machining only the different portions between the work-piece and the ordered product, it saves time. Similarity comparison starts with the determination of the closest pose between two shapes in consideration. The closest pose is derived by comparing the ray distances while one shape is virtually rotated with respect to the other. Shape similarity value and overall similarity value calculated from ray distances are used for grouping. A prototype system based on the proposed methodology has been implemented and applied to the grouping and machining of the shoe lasts of various shapes and sizes.

Similarity Measurement of 3D Shapes Using Ray Distances (Ray distance를 이용한 3차원 형상의 유사성 판단)

  • 정지훈;황태진;오헌영;이건우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.70-73
    • /
    • 2003
  • Custom-tailored products are meant by the products having various sizes and shapes to meet the customer's different tastes or needs. Thus fabrication of custom-tailored products inherently involves inefficiency. To minimize this inefficiency, a new paradigm is proposed in this work. In this paradigm. different paris are grouped together according to their sizes and shapes. Then, representative shape of each group is derived and it will be used as the work-piece from which the parts in the group are machined. Once a new product is ordered, the optimal work-piece is selected through making similarity comparisons of new product and each representative shape. Then an effective NC tool-path is generated to machine only the different portions between the work-piece and the ordered product. The efficient machining conditions are also derived from this shape difference. By machining only the different portions between the work-piece and the ordered product, it saves time. Similarity comparison starts with the determination of the closest pose between two shapes in consideration. The closest pose is derived by comparing the ray distances while one shape is virtually rotated with respect to the other. Shape similarity value and overall similarity value calculated from ray distances are used for grouping. A prototype system based on the proposed methodology has been implemented and applied to the grouping and machining of the shoe lasts of various shapes and sizes.

  • PDF

Influence Factors of Intent to Purchase Personalized Controller Product Design in 3D Printing Environment (3D 프린팅 환경에서 개인 맞춤형 컨트롤러 제품디자인 구매 의도의 영향요인에 관한 연구)

  • Park, Jun-Hong;Lee, Junsang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.873-878
    • /
    • 2020
  • Due to the recent development of 3D printers, interest in 3D printing is growing. 3D printing should reflect individual needs and various requirements by designing products to suit the user's requirements. Research on how to use 3D printed products for the purpose of purchasing products according to user's demand characteristics is insufficient. Therefore, this study conducted a survey and statistical analysis to find out the factors influencing the intention of purchasing custom controller products in 3D printing environments. Research has confirmed that user innovation and convenience safety are important factors for the satisfaction and purchase intent of personal-tailored controller products. Considering user innovation, convenience, and safety when producing controller products using 3D printing, it is expected that value of custom controller manufacturing can be increased. Research is needed on the personalized product development framework that successfully introduces and systematically supports the production methods of personalized products in the early stages.