• Title/Summary/Keyword: Curved-beam element

Search Result 133, Processing Time 0.021 seconds

Development of Stress Intensity Factor Equation for the Notched Ring Test (NRT) Specimen (Notched Ring Test 저속균열 시험편의 응력확대계수정식화)

  • Pyo, Sooho;Choi, Sunwoong
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.87-92
    • /
    • 2014
  • The Notched Ring Test(NRT) has proven to be very useful in determining the slow crack growth behavior of polyethylene pressure pipes. In particular, the test is simple and an order of magnitude shorter in experimental times as compared to the currently used Notched Pipe Test(NPT), which makes this method attractive for use as the accelerated slow crack growth test. In addition, since the NRT specimen is taken directly from the pipe, having maintained the cross-section, processing induced artifacts that would affect the slow crack growth behavior are not altered. This makes the direct comparison to the slow crack growth specimen in pipe from more meaningful. In this study, for comparison with other available slow crack growth methods, including the NPT, the stress intensity factor equation for NRT specimen was developed and demonstrated of its accuracy within 3% of that obtained from the finite element analysis. The equation was derived using a flexure formula of curved beam bending along with numerically determined geometric factors. The accuracy of the equation was successfully tested on 63, 110, 140, 160, 250, and 400 mm nominal pipe diameters, with crack depth ranging from 15 % to 45 % of the pipe wall thickness, and for standard dimensional ratio(SDR) of 9, 11, and 13.6. Using this equation the slow crack results from 110SDR11 NRT specimen were compared to that from the NPT specimen, which demonstrated that the NRT specimen was equivalent to the NPT specimen in creating the slow crack, however in much shorter experimental times.

Collapse Prevention Method of Long-span Plastic Greenhouse for Heavy Snow (장스팬 비닐하우스의 폭설에 의한 붕괴방지법 연구)

  • Kim, Bo-Kyung;Lee, Swoo-Heon;Kim, Jin-Wook;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2010
  • The cases of collapse of greenhouses in rural areas have been increasing due to the unexpected heavy snow load. Studies on how to prevent the collapse of greenhouses are rare, however, and the damages are repeated annually. This studysuggests two reinforcing methods: the use of ahigh-strength tapered module, and the addition of a pre-tension tie. The high-strength tapered section is installed where the bending moment is maximum. The design of a plastic greenhouse is controlled by its strength rather than its deflection. The shape of a greenhouse resembles that of an arch system, but its actual structural behavior is the frame behavior, because it is non-continually composed of a curved element (a beam) and vertical elements (columns). This system is too weak and slender to resist a vertical load, because an external load is resisted by the moment rather than by axial force. In this study, a new method, the installation of a temporary tie at the junction of the arch and the column only during snow accumulation, is proposed. The tie changes the action of the greenhouse frame to an arch action. The arch action is more effective when the pre-tension force is applied in the tie, which results in a very strong temporary structural system during snowfall. As a result of using this high-strength tapered section, the combined strength ratio of what? decreased from 10% to 30%. In the case of the additional reinforcement with a tie, it was reduced by half.

Nonlinear Analysis of PSC Girders with External Tendons (외부강선으로 긴장된 PSC 거더의 비선형 해석)

  • Choi, Kyu-Chon;Lee, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.303-314
    • /
    • 2010
  • A study for the nonlinear analysis method of prestressed concrete(PSC) girders with external tendons is presented. The PSC girders with external tendons show the complex nonlinear behavior due to the slip of external tendons at deviator and the change of eccentricity between the girders and external tendons. The external tendon between anchorage-deviator or deviator-deviator is modeled as an assemblage of the curved elements. The slip effect of the external tendon at deviator is taken into account using the force equilibrium relationship between the friction force and the driving force at each deviator. The finite element model and analysis method of the external tendon suggested herein are integrated in the nonlinear analysis program of segmentally erected PSC frames developed by the authors. The proposed analysis method is verified through the comparison of the analysis and experimental results obtained from other investigators. From the ultimate analysis results of PSC beams with external tendons having different number of deviators, the yielding and ultimate loads of PSC beams found to be increased as the number of deviators are increased. In addition, the ultimate capacity of the PSC beam increases according to the increase of friction coefficient between deviator and external tendon, whereas found to decease over the certain value of friction due to the effect of the moment transmitted to the member by the friction force exerted from the external tendon.