• 제목/요약/키워드: Curved Beam Bending

검색결과 60건 처리시간 0.027초

미분구적법(DQM)을 이용한 곡선보의 외평면 좌굴해석 (Out-of-Plane Buckling Analysis of Curved Beams Using DQM)

  • 강기준
    • 한국안전학회지
    • /
    • 제17권4호
    • /
    • pp.189-195
    • /
    • 2002
  • I-단면 곡선보 (curved beam)의 모멘트 하중 하에서 비틀림(warping)을 포함한 평면외 (out-of-plane)의 좌굴을 미분구적법 (DQM)을 이용하여 해석하였다. 다양한 경계조건(boundary conditions) 및 굽힘각(opening angles)에 따른 임계모멘트 (critical moments)를 계산하고, DQM의 해석결과는 해석적 해답 (exact solution) 과 비교 분석하였다. DQM은 적은 요소(grid points)를 사용하여 정확한 해석결과를 보여주었고, 두 경계조건 (고정-고정, 고정-단순지지)하에서 새로운 결과 또한 제시하였다.

곡선부의 구조 특성을 고려한 선박용 파이프 루프 설계식 개발 (Development of Design Formulas for Pipe Loops Used in Ships Considering the Structural Characteristics of Curved Portions)

  • 박치모;배병일
    • 한국해양공학회지
    • /
    • 제26권5호
    • /
    • pp.87-93
    • /
    • 2012
  • Many longitudinally-arranged pipes in ships are equipped with loops as a measure to reduce stresses caused by displacement loads conveyed from the hull girder bending and/or thermal loads of carried fluid of non-ambient temperature. But as the loops have some negative effects such as causing extra manufacturing cost and occupying extra space, the number and the dimensions of the loops need to be minimized. In the meanwhile, a design formula for pipe loops has been developed by modeling them as a spring element of which stresses and axial stiffness are calculated based on the beam theory. But as the beam theory turns out to be inappropriate to deal with the complex structural behavior in the curved corner portion of the loop, this paper aims at improving the previously developed design formula by adopting correction factors which can allow for the gap between the results of beam theory and a more accurate analysis. This paper adopts a finite element analysis with two-dimensional shell elements with some validation work for it. The paper ends with a sample application of the proposed formulas showing their accuracy and efficiency.

In-plane Vibration Analysis of Rotating Cantilever Curved Beams

  • Zhang, Guang-Hui;Liu, Zhan Sheng;Yoo, Hong-Hee
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1045-1050
    • /
    • 2007
  • Equations of motion of rotating cantilever curved beams are derived based on a dynamic modeling method developed in this paper. The Kane's method is employed to derive the equations of motion. Different from the classical linear modeling method which employs two cylindrical deformation variables, the present modeling method employs a non-cylindrical variable along with a cylindrical variable to describe the elastic deformation. The derived equations (governing the stretching and the bending motions) are coupled but linear. So they can be directly used for the vibration analysis. The coupling effect between the stretching and the bending motions which could not be considered in the conventional modeling method is considered in this modeling method. The natural frequencies of the rotating curved beams versus the rotating speed are calculated for various radii of curvature and hub radius ratios.

  • PDF

Live Load Distribution of Prestressed Concrete Girder Bridge with Curved Slab

  • Park Sun-Kyu;Kim Kwang-Soo;Kim Jin-Ho;Choi Jung-Ho
    • 콘크리트학회논문집
    • /
    • 제16권5호
    • /
    • pp.709-717
    • /
    • 2004
  • The existing AASHTO Standard Specification have some inadequacies in expressing wheel load distribution of bridge which has specific shape of curved bridge instead of straight bridge. Thus, this research presented the finite element analysis and modelling technique of prestressed concrete girder bridge having curved slab and the expression of wheel load distribution was suggested as the ratio of bending moment utilizing the result of finite element analysis of prestressed concrete girder bridge having cowed slab. The considered parameter of girder distribution expression is the curvature of slab, span length, girder space, cross beam space and number of lanes. Though the suggested girder distribution expression is generally underestimated below AASHTO Standard Specification, once the curvature of slab increases, the suggested expression gets larger than AASHTO LRFD Standard Specification.

Geometrically exact initially curved Kirchhoff's planar elasto-plastic beam

  • Imamovic, Ismar;Ibrahimbegovic, Adnan;Hajdo, Emina
    • Coupled systems mechanics
    • /
    • 제8권6호
    • /
    • pp.537-553
    • /
    • 2019
  • In this paper we present geometrically exact Kirchhoff's initially curved planar beam model. The theoretical formulation of the proposed model is based upon Reissner's geometrically exact beam formulation presented in classical works as a starting point, but with imposed Kirchhoff's constraint in the rotated strain measure. Such constraint imposes that shear deformation becomes negligible, and as a result, curvature depends on the second derivative of displacements. The constitutive law is plasticity with linear hardening, defined separately for axial and bending response. We construct discrete approximation by using Hermite's polynomials, for both position vector and displacements, and present the finite element arrays and details of numerical implementation. Several numerical examples are presented in order to illustrate an excellent performance of the proposed beam model.

Deformation estimation of plane-curved structures using the NURBS-based inverse finite element method

  • Runzhou You;Liang Ren;Tinghua Yi ;Hongnan Li
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.83-94
    • /
    • 2023
  • An accurate and highly efficient inverse element labelled iPCB is developed based on the inverse finite element method (iFEM) for real-time shape estimation of plane-curved structures (such as arch bridges) utilizing onboard strain data. This inverse problem, named shape sensing, is vital for the design of smart structures and structural health monitoring (SHM) procedures. The iPCB formulation is defined based on a least-squares variational principle that employs curved Timoshenko beam theory as its baseline. The accurate strain-displacement relationship considering tension-bending coupling is used to establish theoretical and measured section strains. The displacement fields of the isoparametric element iPCB are interpolated utilizing nonuniform rational B-spline (NURBS) basis functions, enabling exact geometric modelling even with a very coarse mesh density. The present formulation is completely free from membrane and shear locking. Numerical validation examples for different curved structures subjected to different loading conditions have been performed and have demonstrated the excellent prediction capability of iPCBs. The present formulation has also been shown to be practical and robust since relatively accurate predictions can be obtained even omitting the shear deformation contributions and considering polluted strain measures. The current element offers a promising tool for real-time shape estimation of plane-curved structures.

Mechanics-Based Determination of the Center Roller Displacement in Three-Roll Bending for Smoothly Curved Rectangular Plates

  • Shin, Jong-Gye;Lee, Jang-Hyun;Kim, You-Il;Hyunjune Yim
    • Journal of Mechanical Science and Technology
    • /
    • 제15권12호
    • /
    • pp.1655-1663
    • /
    • 2001
  • The objective of this paper is to develop a logical procedure to determine the center roller displacement, in the three-roll bending process, which is required in the fabrication of curved rectangular plates with a desired curvature. To this end, the mechanics of the process was analyzed by both analytical and finite element approaches. Comparisons of the results reveal that a simple analytical procedure, based on the beam theory, yields a reasonably accurate relationship between the center roller displacement and residual curvature. With further development and refinement, the proposed in this work has great premise for practical application, particularly automation of the process.

  • PDF

미분구적법(DQM)을 이용한 곡선보의 내평면 좌굴해석 (In-Plane Buckling Analysis of Curved Beams Using DQM)

  • 강기준;김영우
    • 한국산학기술학회논문지
    • /
    • 제13권7호
    • /
    • pp.2858-2864
    • /
    • 2012
  • 곡선보 (curved beam)의 내평면 모멘트 및 등분포하중 하에서 평면내 (in-plane) 좌굴 (buckling)을 미분구적법(DQM)을 이용하여 해석하였다. 다양한 경계조건 (boundary conditions)과 굽힘각 (opening angles)에 따른 임계모멘트 및 임계하중을 계산하였다. DQM의 해석결과는 해석적 해답 (exact solution) 결과와 비교하였으며, DQM은 적은 요소 (grid points)를 사용하여 정확한 해석결과를 보여주었다. 두 경계조건(고정-고정, 단순지지-고정)하에서 새 결과를 또한 제시하였다.

Free vibration characteristics of horizontally curved composite plate girder bridges

  • Wong, M.Y.;Shanmugam, N.E.;Osman, S.A.
    • Steel and Composite Structures
    • /
    • 제10권4호
    • /
    • pp.297-315
    • /
    • 2010
  • This paper is concerned with free vibration characteristics and natural frequency of horizontally curved composite plate girder bridges. Three-dimensional finite element models are developed for the girders using the software package LUSAS and analyses carried out on the models. The validity of the finite element models is first established through comparison with the corresponding results published by other researchers. Studies are then carried out to investigate the effects of total number of girders, number of cross-frames and curvature on the free vibration response of horizontally curved composite plate girder bridges. The results confirm the fact that bending modes are always coupled with torsional modes for horizontally curved bridge girder systems. The results show that the first bending mode is influenced by composite action between the concrete deck and steel beam at low subtended angle but, on the girders with larger subtended angle at the centre of curvature such influence is non-existence. The increase in the number of girders results in higher natural frequency but at a decreasing rate. The in-plane modes viz. longitudinal and arching modes are significantly influenced by composite action and number of girders. If no composite action is taken into account the number of girders has no significant effect for the in-plane modes.

Roll bending machine에 의한 선체외판의 곡면가공 해석 (Analysis of Ship Hull Plate Bending By Roll Bending Machine)

  • 김유일;신종계;이장현
    • 대한조선학회논문집
    • /
    • 제33권4호
    • /
    • pp.142-149
    • /
    • 1996
  • 선체 외관을 이루는 판부재 중에서 일차곡만을 가진 부품은 피라미드 형의 롤러 굽힘장치를 이용하여 제작한다. 일차곡 부재를 생산하기 위한 공정에서 가장 중요한 작업 변수는 중앙 롤러의 수직변위값이다. 본 연구에서는 이러한 굽힘 현상을 보의 탄소성 굽힘현상으로 모델링하여 해석해를 구하였으며, 엄밀한 역학적 이해를 위하여 유한요소해석법을 이용하여 굽힘현상을 해석하였다. 해석을 통하여 일정한 굽힘 곡률을 얻기 위한 중앙 롤러의 수직변위 값을 계산하였으며, 유한요소해석법은 보 요소와 평면변형율 요소를 이용하여 모델링하고 각각의 경우에 대한 해석을 수행하였으며 이 결과를 해석해와 비교하였다. 계산을 통하여 판에 가해야 할 굽힘곡률과 중앙롤러의 수직변위 사이의 관계를 도출하였으며 일차곡가공의 중요한 작업변수인 중앙롤러의 수직변위와 잔류곡률상의 관계를 수치 데이터로써 정식화 하였다.

  • PDF