PKI-based public key scheme is outstanding in terms of authenticity and privacy. Nevertheless its application brings big burden due to the certificate/key management. It is difficult to apply it to limited computing devices in WSN because of its high encryption complexity. The Bilinear Pairing emerged from the original IBE to eliminate the certificate, is a future significant cryptosystem as based on the DDH(Decisional DH) algorithm which is significant in terms of computation and secure enough for authentication, as well as secure and faster. The practical EC Weil Pairing presents that its encryption algorithm is simple and it satisfies IND/NM security constraints against CCA. The Random Oracle Model based IBE PKG is appropriate to the structure of our target system with one secret file server in the operational perspective. Our work proposes modification of the Weil Pairing as proper to the closed network for secret file distribution[2]. First we proposed the improved one computing both encryption and message/user authentication as fast as O(DES) level, in which our scheme satisfies privacy, authenticity and integrity. Secondly as using the public key ID as effective as PKI, our improved IBE variant reduces the key exposure risk.
Petroleum reservoir characterization is a process for quantitatively describing various reservoir properties in spatial variability using all the available field data. Porosity and permeability are the two fundamental reservoir properties which relate to the amount of fluid contained in a reservoir and its ability to flow. These properties have a significant impact on petroleum fields operations and reservoir management. In un-cored intervals and well of heterogeneous formation, porosity and permeability estimation from conventional well logs has a difficult and complex problem to solve by conventional statistical methods. This paper suggests an intelligent technique using fuzzy logic and neural network to determine reservoir properties from well logs. Fuzzy curve analysis based on fuzzy logics is used for selecting the best related well logs with core porosity and permeability data. Neural network is used as a nonlinear regression method to develop transformation between the selected well logs and core analysis data. The intelligent technique is demonstrated with an application to the well data in offshore Korea. The results show that this technique can make more accurate and reliable properties estimation compared with previously used methods. The intelligent technique can be utilized a powerful tool for reservoir characterization from well logs in oil and natural gas development projects.
Background: Monitoring and control of PM2.5 are being recognized as key to address health issues attributed to PM2.5. Availability of low-cost PM2.5 sensors made it possible to introduce a number of portable PM2.5 monitors based on light scattering to the consumer market at an affordable price. Accuracy of light scatteringe-based PM2.5 monitors significantly depends on the method of calibration. Static calibration curve is used as the most popular calibration method for low-cost PM2.5 sensors particularly because of ease of application. Drawback in this approach is, however, the lack of accuracy. Methods: This study discussed the calibration of a low-cost PM2.5-monitoring device (PMD) to improve the accuracy and reliability for practical use. The proposed method is based on construction of the PM2.5 sensor network using Message Queuing Telemetry Transport (MQTT) protocol and web query of reference measurement data available at government-authorized PM monitoring station (GAMS) in the republic of Korea. Four machine learning (ML) algorithms such as support vector machine, k-nearest neighbors, random forest, and extreme gradient boosting were used as regression models to calibrate the PMD measurements of PM2.5. Performance of each ML algorithm was evaluated using stratified K-fold cross-validation, and a linear regression model was used as a reference. Results: Based on the performance of ML algorithms used, regression of the output of the PMD to PM2.5 concentrations data available from the GAMS through web query was effective. The extreme gradient boosting algorithm showed the best performance with a mean coefficient of determination (R2) of 0.78 and standard error of 5.0 ㎍/㎥, corresponding to 8% increase in R2 and 12% decrease in root mean square error in comparison with the linear regression model. Minimum 100 hours of calibration period was found required to calibrate the PMD to its full capacity. Calibration method proposed poses a limitation on the location of the PMD being in the vicinity of the GAMS. As the number of the PMD participating in the sensor network increases, however, calibrated PMDs can be used as reference devices to nearby PMDs that require calibration, forming a calibration chain through MQTT protocol. Conclusions: Calibration of a low-cost PMD, which is based on construction of PM2.5 sensor network using MQTT protocol and web query of reference measurement data available at a GAMS, significantly improves the accuracy and reliability of a PMD, thereby making practical use of the low-cost PMD possible.
Traditionally, a dynamic network model is considered as a tool for solving real-time traffic problems. One of useful and practical ways of using such models is to use it to produce and disseminate forecast travel time information so that the travelers can switch their routes from congested to less-congested or uncongested, which can enhance the performance of the network. This approach seems to be promising when the traffic congestion is severe, especially when sudden incidents happen. A consideration that should be given in implementing this method is that travel time information may affect the future traffic condition itself, creating undesirable side effects such as the over-reaction problem. Furthermore incorrect forecast travel time can make the information unreliable. In this paper, a network-wide travel time prediction model under incidents is developed. The model assumes that all drivers have access to detailed traffic information through personalized in-vehicle devices such as car navigation systems. Drivers are assumed to make their own travel choice based on the travel time information provided. A route-based stochastic variational inequality is formulated, which is used as a basic model for the travel time prediction. A diversion function is introduced to account for the motorists' willingness to divert. An inverse function of the diversion curve is derived to develop a variational inequality formulation for the travel time prediction model. Computational results illustrate the characteristics of the proposed model.
Kim, Sunghun;Ahn, Hyunjun;Shin, Hongjoon;Heo, Jun-Haeng
Journal of Korea Water Resources Association
/
v.49
no.12
/
pp.1007-1014
/
2016
The FORGEX (Focused Rainfall Growth Extension) method was developed to estimate rainfall quantiles in the United Kingdom. This method does not need any regional grouping and can estimate rainfall quantiles with relatively long return period. The spatial dependence formula (ln $N_e$) was derived to consider the distance from growth curve of proper population to the distributed network maximum (netmax) data using the UK rainfall data. For this reason, there is an inaccurate problem in rainfall quantiles when this formula is applied in Korea. In this study, the new formula was derived in order to improve such shortcomings using rainfall data of 64 sites from the Korea Meteorological Administration (KMA). A 42-year period (1973~2014) was taken as the reference period from rainfall data, then the formula was derived using three parameters such as rainfall duration, number of site, area of network. Then the new formula was applied to the FORGEX method for regional rainfall frequency analysis. In addition, rainfall quantiles were compared with those from the UK formula. As a result, the new formula shows more accurate results than the UK formula, in which the FORGEX method by the UK formula underestimates rainfall quantiles. Finally, the new improved formula may estimate accurate rainfall quantiles for long return period.
The purpose of this study was to analyze landslide susceptibility in the Pyeongchang area using Weight of Evidence (WOE) and Evidential Belief Function (EBF) as probability models and Artificial Neural Networks (ANN) as a machine learning model in a geographic information system (GIS). This study examined the widespread shallow landslides triggered by heavy rainfall during Typhoon Ewiniar in 2006, which caused serious property damage and significant loss of life. For the landslide susceptibility mapping, 3,955 landslide occurrences were detected using aerial photographs, and environmental spatial data such as terrain, geology, soil, forest, and land use were collected and constructed in a spatial database. Seventeen factors that could affect landsliding were extracted from the spatial database. All landslides were randomly separated into two datasets, a training set (50%) and validation set (50%), to establish and validate the EBF, WOE, and ANN models. According to the validation results of the area under the curve (AUC) method, the accuracy was 74.73%, 75.03%, and 70.87% for WOE, EBF, and ANN, respectively. The EBF model had the highest accuracy. However, all models had predictive accuracy exceeding 70%, the level that is effective for landslide susceptibility mapping. These models can be applied to predict landslide susceptibility in an area where landslides have not occurred previously based on the relationships between landslide and environmental factors. This susceptibility map can help reduce landslide risk, provide guidance for policy and land use development, and save time and expense for landslide hazard prevention. In the future, more generalized models should be developed by applying landslide susceptibility mapping in various areas.
The purpose of this study is to use network analysis to identify trends in university personality-related studies and provide implications for future research directions. For the purpose of this study, 194 papers related to personality of university students published in Korean scholarly journals. First, research began to be published in 2004, slightly increased in 2012, continued an upward curve from 2015, peaked in 2017, and is confirmed to be a downward trend. Second, the main keywords with the centrality analysis were 'society' and 'cultivation'. Third, keywords on the cognitive side and individual dimension of personality in the first period (2004 - 2010), social dimension and emotional side of personality in the second period (2011-2015), and social level and cognitive, emotional, and behavioral aspects of personality in the third period (2016-2020). Fourth, Topic 2 consisted of keywords of ability, life, interpersonal, satisfaction, and adaptation, and Topic 1 consisted of competence, morality, citizens, society, and practice. Fifth, Topic 4 alone in the first period, in the order of Topic 1 and Topic 2 in the second period, and in the order of Topic 2 and Topic 1 in the third period.
Corporate bankruptcy can cause great losses not only to stakeholders but also to many related sectors in society. Through the economic crises, bankruptcy have increased and bankruptcy prediction models have become more and more important. Therefore, corporate bankruptcy has been regarded as one of the major topics of research in business management. Also, many studies in the industry are in progress and important. Previous studies attempted to utilize various methodologies to improve the bankruptcy prediction accuracy and to resolve the overfitting problem, such as Multivariate Discriminant Analysis (MDA), Generalized Linear Model (GLM). These methods are based on statistics. Recently, researchers have used machine learning methodologies such as Support Vector Machine (SVM), Artificial Neural Network (ANN). Furthermore, fuzzy theory and genetic algorithms were used. Because of this change, many of bankruptcy models are developed. Also, performance has been improved. In general, the company's financial and accounting information will change over time. Likewise, the market situation also changes, so there are many difficulties in predicting bankruptcy only with information at a certain point in time. However, even though traditional research has problems that don't take into account the time effect, dynamic model has not been studied much. When we ignore the time effect, we get the biased results. So the static model may not be suitable for predicting bankruptcy. Thus, using the dynamic model, there is a possibility that bankruptcy prediction model is improved. In this paper, we propose RNN (Recurrent Neural Network) which is one of the deep learning methodologies. The RNN learns time series data and the performance is known to be good. Prior to experiment, we selected non-financial firms listed on the KOSPI, KOSDAQ and KONEX markets from 2010 to 2016 for the estimation of the bankruptcy prediction model and the comparison of forecasting performance. In order to prevent a mistake of predicting bankruptcy by using the financial information already reflected in the deterioration of the financial condition of the company, the financial information was collected with a lag of two years, and the default period was defined from January to December of the year. Then we defined the bankruptcy. The bankruptcy we defined is the abolition of the listing due to sluggish earnings. We confirmed abolition of the list at KIND that is corporate stock information website. Then we selected variables at previous papers. The first set of variables are Z-score variables. These variables have become traditional variables in predicting bankruptcy. The second set of variables are dynamic variable set. Finally we selected 240 normal companies and 226 bankrupt companies at the first variable set. Likewise, we selected 229 normal companies and 226 bankrupt companies at the second variable set. We created a model that reflects dynamic changes in time-series financial data and by comparing the suggested model with the analysis of existing bankruptcy predictive models, we found that the suggested model could help to improve the accuracy of bankruptcy predictions. We used financial data in KIS Value (Financial database) and selected Multivariate Discriminant Analysis (MDA), Generalized Linear Model called logistic regression (GLM), Support Vector Machine (SVM), Artificial Neural Network (ANN) model as benchmark. The result of the experiment proved that RNN's performance was better than comparative model. The accuracy of RNN was high in both sets of variables and the Area Under the Curve (AUC) value was also high. Also when we saw the hit-ratio table, the ratio of RNNs that predicted a poor company to be bankrupt was higher than that of other comparative models. However the limitation of this paper is that an overfitting problem occurs during RNN learning. But we expect to be able to solve the overfitting problem by selecting more learning data and appropriate variables. From these result, it is expected that this research will contribute to the development of a bankruptcy prediction by proposing a new dynamic model.
For the purpose of preciously describing real time traffic pattern in urban road network, dynamic network loading(DNL) models able to simulate traffic behavior are required. A number of different methods are available, including macroscopic, microscopic dynamic network models, as well as analytical model. Equivalency minimization problem and Variation inequality problem are the analytical models, which include explicit mathematical travel cost function for describing traffic behaviors on the network. While microscopic simulation models move vehicles according to behavioral car-following and cell-transmission. However, DNL models embedding such travel time function have some limitations ; analytical model has lacking of describing traffic characteristics such as relations between flow and speed, between speed and density Microscopic simulation models are the most detailed and realistic, but they are difficult to calibrate and may not be the most practical tools for large-scale networks. To cope with such problems, this paper develops a new DNL model appropriate for dynamic traffic assignment(DTA), The model is combined with vertical queue model representing vehicles as vertical queues at the end of links. In order to compare and to assess the model, we use a contrived example network. From the numerical results, we found that the DNL model presented in the paper were able to describe traffic characteristics with reasonable amount of computing time. The model also showed good relationship between travel time and traffic flow and expressed the feature of backward turn at near capacity.
Social bookmarking systems are a typical web 2.0 service based on folksonomy, providing the platform for storing and sharing bookmarking information. Spammers in social bookmarking systems denote the users who abuse the system for their own interests in an improper way. They can make the entire resources in social bookmarking systems useless by posting lots of wrong information. Hence, it is important to detect spammers as early as possible and protect social bookmarking systems from their attack. In this paper, we applied a diverse set of machine learning approaches, i.e., decision tables, decision trees (ID3), $na{\ddot{i}}ve$ Bayes classifiers, TAN (tree-augment $na{\ddot{i}}ve$ Bayes) classifiers, and artificial neural networks to this task. In our experiments, $na{\ddot{i}}ve$ Bayes classifiers performed significantly better than other methods with respect to the AUC (area under the ROC curve) score as veil as the model building time. Plausible explanations for this result are as follows. First, $na{\ddot{i}}ve$> Bayes classifiers art known to usually perform better than decision trees in terms of the AUC score. Second, the spammer detection problem in our experiments is likely to be linearly separable.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.