• Title/Summary/Keyword: Curtain effect

Search Result 104, Processing Time 0.023 seconds

Cooling Effect of Air in Greenhouse Using A Fog Sprayer Consisted of Two-fluid Nozzle with Turbo Fan (터보 팬 2류체 노즐로 구성한 포그 분무장치를 이용한 온실 내 공기의 냉각 효과)

  • Kim, Tae-Kyu;Min, Young-Bong;Kim, Do-Wan;Kim, Myung-Kyu;Moon, Sung-Dong;Chung, Tae-Sang
    • Journal of agriculture & life science
    • /
    • v.46 no.3
    • /
    • pp.119-127
    • /
    • 2012
  • For the promotion of the evaporative cooling efficiency of hot air in greenhouse in summer, a fog sprayer consisted of a high volume spraying two-fluid nozzle with turbo fan and a blowing fan was set up at 2.2 m height from bottom of small glass greenhouse and tested to estimate the possibility of the greenhouse cooling. The mean droplet size and the volume sprayed by one of fog sprayer were $29{\mu}m$ and $160m{\ell}/min$. All the droplets sprayed and blown by the fog sprayer were evaporated within 2 m radius. The result from the cooling test that two sprayers set up in glass greenhouse of plane area $228m^2$ was represented lower cooling effect that the temperature and relative humidity of inside air of greenhouse were $28.8^{\circ}C$ and 87.5% when those of outside air of greenhouse were $30.2^{\circ}C$ and 81.2%. Through investigation of literatures and results of the cooling test, it was estimated that the water spraying rate of evaporative cooling of single span greenhouse with 50% light curtain and with air change rate of 1 volume/min was $10m{\ell}/min/m^2$ so that the inside air temperature may cool down $2{\sim}3^{\circ}C$ on the basis of $35^{\circ}C$ atmospheric temperature in summer of south korean area.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Analysis of the Insulation Effectiveness of the Thermal Insulator by the Installation Methods (보온단열재의 설치방법에 따른 보온성 효과 분석)

  • Kim, Young-Bok;Lee, Si-Young;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.332-340
    • /
    • 2009
  • In this study, the thermal insulation effectiveness of the greenhouse insulators by the installation methods was investigated to find the right installation way of the insulation materials. Physical properties of the insulators such as thickness, air transmissivity, apparent density, ultraviolet rays cutoff ratio, reflectance, thermal conductivity, moisture absorptivity were evaluated and the insulation ability of the insulators were measured by the module experiments. For the same insulator, the insulation ability of the case with the outward direction of the black colored face, i.e., with the inward direction of the white colored face, was better than that of vice versa. The case of the black colored both surfaces was better than the case of the white colored both surfaces. For aluminium reflection material, the case with the outward direction of the lustre face, i.e., with the inward direction of the non-lustre face, was better than that of vice versa. For the same material with the inner thin polyethylene foam (or polyester) and the chemical wool, the case with the outward direction of the inner thin polyethylene foam (or polyester), i.e., with the inward chemical wool, was better than that of vice versa. Addition of the inner thin polyethylene foam increased the insulation effect very much.

Establishing Process of the 1st 10-year National Greening Project : At the Turning Point between the Management-oriented Approach and Administration-oriented Approach (제1차 치산녹화10년계획의 수립 과정:경영중심 임정과 행정중심 임정의 갈림길)

  • Bae, Jae-Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.269-282
    • /
    • 2007
  • The purpose of this study is to investigate the causes of the dramatic process in forest policies from July of 1972 to June of 1973. In 1972, the core forest problem calling for an immediate solution was the severe forest degradation such as a low growing stock ($11m^3/ha$) and lots of non-tree forest land corresponding to 12% of total forest land. There could have been various approaches to solve the problem at that time. By the end of 1972, the Korean government was afoot to choose the management-oriented approach to carry out reforestation as a part of forest management. In order to implement this approach, the Korean government established the Forest Development Law enforcing establishment of the Forest Management Corporation as a public organization to carry out forest management in the special development land. However, the Korean government changed the management-oriented approach into the administration-oriented approach to carry out reforestation as a part of forest greening in order to rehabilitate severe degraded forests as soon as possible in early 1973. The Forestry Administration (refer to Forest Service) was transferred from the Department of Agriculture and Forestry to the Department of Interior for the efficient rehabilitation in advance, before the 1st 10-year National Greening Project. After the organization's transfer, the government established the 1 st 10-year National Greening Project aiming to reforest one million ha from 1973 to 1982 to use activities like the national greening campaign and the administrative organization mobilization including police force. Reforestation policy as a part of forest management lost effect due to the greening-oriented approach choice. Moreover, the Government struggled to provide 20 billion won for the establishment of the Forest Management Corporation. After all, on March 5th of 1973, the management-oriented approach dropped a curtain deleting the clauses defining the establishment of the Forest Management Corporation. Park, Chung-hee who was the then president of Korea might have felt the 'time restriction' to lose no time to habilitate degraded forests. Due to his awareness, the approach regarding reforestation was changed into administration-oriented activities. The president's awareness was considered as an invisible cause at that time.