• Title/Summary/Keyword: Current-controlled voltage source inverter

Search Result 94, Processing Time 0.027 seconds

Operational Characteristics of a Flux-Lock Type SFCL Integrated with Voltage-Controlled Voltage Source Inverter

  • Lee, Su-Won;Lim, Sung-Hun;Ko, Sung-Hun;Lee, Seong-Ryong
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.546-551
    • /
    • 2008
  • In this paper, a flux-lock type superconducting fault current limiter(SFCL) integrated with a voltage-controlled voltage source inverter(VC-VSI) is proposed. The suggested equipment, which consists of a flux-lock type SFCL and a VCVSI, can perform the fault current limiting operation from the occurrence of a short-circuit. In addition, it can compensate the reactive power that the non-linear load requires and also perform the uninterruptible power supply(UPS) as well as the load voltage stabilization by controlling the amplitude and the phase of the inverter's output voltage. The specification for a test model was determined and its various functions such as the fault current limiting and the power conditioning operations were presented and analyzed via computer simulation. Through the analytical results based on the computer simulation, the validity of the analysis was confirmed and its multi-operation was discussed.

CURRENT-CONTROLLED PWM-RECTIFIER WITH di/dt FEEDBACK/VOLTAGE-SOURCE INVERTER WITHOUT DC LINK COMPONENTS FOR INDUCTION MOTOR DRIVE

  • Iimori, Kenichi;Shinohara, Katsuji;Muroya, Mitsuhiro;Kitanaka, Hidetoshi
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.524-528
    • /
    • 1998
  • The voltage-source inverters are normally equipped with an electrolytic capacitor in their DC link, however, the electrolytic capacitor has several disadvantages such as increasing size, limiting converter life and reliability. Therefore, several approaches for removing the DC link capacitor have been studied by the authors. This paper proposes a new voltage-source inverter without DC link components. To reduce waveform distortion of the AC source current, the current-controlled PWM-rectifier with di/dt feedback is introduced. The di/dt feedback gain and LC parameters are investigated by calculation for a 0.75kW induction motor driven by this inverter. The calculated AC source currents maintain nearly sinusoidal waveforms with a unity power factor.

  • PDF

Improved LCCT Z-Source DC-AC Inverter for Ripple Reduction of Input Current and Capacitor Voltage (입력전류와 커패시터 전압의 맥동저감을 위한 개선된 LCCT Z-소스 DC-AC 인버터)

  • Shin, Yeon-Soo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1432-1441
    • /
    • 2012
  • In this study, an improved LCCT(Inductor-Capacitor-Capacitor-Trans) Z-source inverter(Improved LCCT ZSI) with characteristics of Quasi Z-source inverter(QZSI) and LCCT Z-source inverter(LCCT ZSI) is proposed. The proposed inverter can also reduce the voltage stress and input current/capacitor voltage ripples compared with conventional LCCT ZSI and Quasi ZSI. A two winding trans in Z-impedance network of the conventional LCCT ZSI is replaced by a three winding trans in the proposed inverter. To verify the validity of the proposed inverter, a DSP controlled hardware was made and PSIM simulation was executed for each method. Comparing the current and voltage ripples of each method under the condition of input DC voltage 70[V] and output AC voltage 76[Vrms], the input current and capacitor voltage ripple factors of the proposed inverter were low as 11[%] and 1.4[%] respectively. And, for generation of the same output AC voltage of each method, voltage stress of the proposed inverter was low as 175[V] under the condition of duty ratio D=0.15. As mentioned above, we could know that the proposed inverter have the characteristics of low voltage stress, low ripple factor and low operation duty ratio compared with the conventional methods. Finally, the efficiency according to load change/duty ratio and the transient state characteristics were discussed.

Current-controlled PWM for voltage source single phase inverter (전류제어 PWM에 의한 단상 인버어터 제어)

  • Park, Hoon-Kyung;Lee, Kwang-Won;Lee, Sang-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.277-280
    • /
    • 1988
  • In the current-controlled PWM, the actual current tracks the sinusoidal reference wave within desired hyeteresis band. This paper au99e61s the current control scheme for voltage-fed single-phase inverter and presents the simulation results. It is expected that the inverter with this control method produces no significant lower-order harmonics.

  • PDF

The Triple Current Source Inverter System for Induction Motor Drive Using a One Chip Microcomputer (One Chip Microcomputer를 이용한 유도전동기 구동용 3동 전류형 인버어터시스템)

  • Chung, Yon-Tack;Jang, Seong-Chil;Hwang, Lak-Hoon;Lee, Hoon-Goo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.162-172
    • /
    • 1991
  • In proportion to the capacity enlargement of the induction motor system controlled by current source inverter, the capacitance of the commutating capacitor is enlarged and then the spike value of output voltage is increased at the moment of charge and discharge. Moreover, the output currnet includes a number of harmonic components. Such voltage spike and harmonics generate the torque ripple and lead to bad effects on the performance of the induction motor. In this study, all the harmonics excluding 17th and 19th harmonics were mostly elimunated by adopting 18-phase Triple High Frequency Current Source Inverter(HFCSI), and the spike component of output voltage was reduced by adding the Voltage Clamping Circuit(VCC). As a result, the torque ripple and the commutation loss were reduced and the performance of the system was improved. Experiments for speed control were carried out in the tripple current source inverter system for induction motor drive. Overall system was controlled by ONE CHIP MICROCOMPUTER(INTEL 8751). Control circuits were simplified and good experimental results in the constant V/F control were obtained due to the flexibility of the microcomputer.

  • PDF

Automatic frequency Control Current-Source Inverter for Forging Application

  • Chudjuarjeen, Saichol;Koompai, Chayant;Monyakul, Veerapol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.238-242
    • /
    • 2004
  • The paper describes an automatic frequency control current-fed inverter for forging applications. The IGBT in series with diodes as its switching devices in the inverter circuit which is of full-bridge type. The operating frequency is automatically tracked to maintain a small constant leading phase angle when load parameters change. The load voltage is controlled to protect the switches. The output power can be adjusted by varying the input current from phase controlled rectifiers which is a part of current source. The system has been operated at 15-17 kHz. The output power transferred to the load is 1,595 watts. It can heat the steel work pieces with 15 mm diameter and 120 mm long from room temperature to approximately 1100 $^{\circ}C$ within 20 seconds with 0.97 leading power factor on the input side.

  • PDF

Stability Analysis of Induction Motor Driven by Stator Voltage Controlled CSI (고정자전압제어 전류형 인버터에 의한 유도전동기 구동시스템의 안정도 해석)

  • Song, Joong-Ho;Yoon, Tae-Woong;Youn, Myung-Joong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.32-41
    • /
    • 1992
  • This paper presents a comprehensive study on the stability of several control schemes for the induction motor driven by current source inverters. A stator voltage controlled current source inverter drive system without a speed sensor is investigated in order to find appropriate control schemes, which are primarily based on direct or, alternatively, indirect frequency control scheme. It can be seen, especially that an introduction of the indirect frequency control method improves the inherent instability of the current source inverter drive system for the induction motor. The overall control systems with either voltage control loop or current and voltage control loops in addition to each frequency control scheme, are analyzed by utilizing the root locus method and simulated by computer to show the validity of this analysis.

Current Controlled PWM for Multilevel Voltage-Source Inverters with Variable and Constant Switching Frequency Regulation Techniques: A Review

  • Gawande, S.P.;Ramteke, M.R.
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.302-314
    • /
    • 2014
  • Due to advancements in power electronics and inverter topologies, the current controlled multilevel voltage-source pulse width modulated (PWM) inverter is usually preferred for accurate control, quick response and high dynamic performance. A multilevel topology approach is found to be best suited for overcoming many problems arising from the use of high power converters. This paper presents a comprehensive review and comparative study of several current control (CC) techniques for multilevel inverters with a special emphasis on various approaches of the hysteresis current controller. Since the hysteresis CC technique poses a problem of variable switching frequency, a ramp-comparator controller and a predictive controller to attain constant switching frequency are described along with its quantitative comparison. Furthermore, various methods have been reviewed to achieve hysteresis current control PWM with constant switching frequency operation. This paper complies various guidelines to choose a particular method suitable for application at a given power level, switching frequency and dynamic response.

Gird-interactive Current Controlled Voltage Source Inverter System with UPS (UPS를 고려한 계통연계 전류제어형 전압원 인버터)

  • Ko, Sung-Hun;Lim, Sung-Hun;Lee, Su-Won;Lee, Seong-Ryong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1064-1070
    • /
    • 2007
  • This paper presents a grid-interactive current controlled voltage source inverter (CCVSI) with uniterruptible power supply (UPS), which uses an inner current control loop (polarized ramp time (PRT)) and outer feedback control loops to improve grid power quality and UPS. To reduce the complexity, cost and number of power conversions, which results in higher efficiency, a single stage CCVSI is used. The operation of this system could be divided into the power quality control (PQC) state mode and the UPS state mode. In PQC mode, the system operated to compensate the reactive power demand by nonlinear load or variation in load. In UPS mode. the system is controlled to provide a sinusoidal voltage at the rated value for the load when the gird fail. To verify the proposed system, a comprehensive evaluation with theoretical analysis, simulation and experimental results for 1KVA load capacity is presented.

Effects of Wire speed Fluctuation on Arc Stability in GMA Welding (GMAW에서 와이어 송급속도의 변동이 아크안정성에 미치는 영향에 관한 연구)

  • 신현욱;최용범;성원호;장희석
    • Journal of Welding and Joining
    • /
    • v.13 no.4
    • /
    • pp.85-102
    • /
    • 1995
  • Weld quality of GMA welding processes is closely related to arc stability. Although many researches on arc stability have been performed, real-time estimation of arc stability has not been attempted. For instance, Mita proposed a off-line statistical method in which short circuiting and arcing time, and voltage and current wave forms were sampled to assess arc stability. But this method is not suitable to assess arc stability for GMA welder which employ inverter power source due to its controlled current and voltage wave forms. In this paper, the relationship between are stability and wire feed rate fluctuation is analyzed to propose new criterion for inverter power source. When arc voltage and arc current and arcing time are analyzed, we can assess arc stability only for short circuit transfer mode. When wire feed rate is analyzed, we can estimate arc stability udner the condition of spray transfer mode as well. Hence, the wire feed rate is chosen for monitoring process variable to cover possible metal transfer modes in GMAW. Through this research, it has been identified that arc stability in GMA welding processes is closely related to wire fed rate. When inverter power source is used, conventional statistical method of estimating arc stability, such as Mita index, is no longer valid due to its controlled voltage and current wave forms. Arc stability has been also examined in phase plane diagram.

  • PDF