• Title/Summary/Keyword: Current transport

Search Result 1,636, Processing Time 0.025 seconds

Current Sharing and AC Loss of a Multi-Layer HTS Power Transmission Cable with Variable Cable Length (다층 고온초전도 송전케이블의 길이에 따른 층별 전류분류 및 교류손실 계산)

  • Lee, Ji-Kwang;Cha, Guee-Soo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.10-14
    • /
    • 2001
  • The superconducting transmission cable is one of interesting part in power application using high temperature superconducting wire. One important parameter in HTS cable design is transport current sharing because it is related with current transmission capacity and loss. In this paper, we calculate self inductances of each layer and mutual inductances between two layers from magnetic field energy, and current sharing of each layer for 4-layer cable using the electric circuit model which contain inductance and resistance (by joint and AC loss). Also, transport current losses which are calculated by monoblock model and Norris equation are compared. As a results, outer layer has always larger transport current than inner layer, and current capacity of each layer is largely influenced by resistance per unit cable length. As a conclusion, for high current uniformity and low AC loss, we have to decrease inductances themselves or those differences.

  • PDF

Effect on the Transport Current and Quench Resistance of the HTS Wire with Normal-Superconducting Junction During the Fault Current Applying (사고전류 인가 시 초전도선재의 상전도-초전도 접합부가 통전전류와 ?치저항에 미치는 영향)

  • Hong, Gong-Hyun;Du, Ho-Ik;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.625-629
    • /
    • 2015
  • The second-generation HTS wire its YBCO coated conductor is widely used in the superconducting power apparatus. The YBCO coated conductor uses the normal-superconducting junction to increase the transport capacity of superconducting power apparatus when it is applied. The normal-superconducting junction can be a cause of reducing the stability of the superconducting power apparatus when a fault current is applied. Thus, in this study we have conducted the effect analysing normal-superconducting junction for the fault current using transport current and quench resistance. From the experimental results when a fault current is applied, the effect on the normal-superconducting junction is reduced the larger the amplitude of the fault current and is helpful to maintain the thermal stability of the HTS wire.

Characteristics of a Warm Eddy Observed in the Ulleung Basin in July 2005

  • Shin, Chang-Woong
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.283-296
    • /
    • 2009
  • Oceanographic survey data were analyzed to understand the characteristics of a warm eddy observed in the Ulleung Basin in July 2005. The temperature distribution at 200 db and vertical sections provided evidence of the warm eddy in the Ulleung Basin (UWE05). Based on the 5$^{\circ}C$ isothermal line on 200 db temperature, the major axis was 160 km from southwest to northeast, and the minor axis was 80 km from southeast to northwest. The homogeneous layer in the thermocline of UWE05 had mean values of 10.40$^{\circ}C$ potential temperature, 34.35 psu salinity, and 26.37 kg/m$^3$ potential density (${\sigma}_{\theta}$) and provided evidence that UWE05 also existed during the winter of 2004-2005. A warm streamer initially flowed along the circumference of UWE05 and mixed with the upper central water. Two northward current cores were found on the western side of the measured current section at the central latitude of UWE05. One was the East Korean Warm Current (EKWC) and the other was the main stream of the western part of UWE05. Geostrophic transport of the upper layer (from the surface to the isopycnal surface of 26.9 ${\sigma}_{\theta}$) was approximately 2.5 Sv in the eastern side of UWE05. However, the measured transport was twice as large as the geostrophic transport. Mass conservation of geostrophic transport was well satisfied in the upper layer. The direct current measurements and geostrophic transport analysis showed that the EKWC meandered around UWE05.

A Study on the Enhancement of the International Regulatory Regime for Sea Transport of Radioactive Material through Improving the INF Code

  • Suk, Ji-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.36 no.7
    • /
    • pp.577-583
    • /
    • 2012
  • The transport of radioactive material by sea is strictly governed by the international regulatory regime which is established by both IAEA and IMO. Nonetheless, although the current regime is well established, due to catastrophic results of potential accident, it is essential to keep identifying areas where further enhancement is necessary. This paper reviews the current regulatory regime governing sea transport, such as IAEA Regulations, IMDG Code and INF Code. Then, specific requirements of the INF Code are analyzed for the purpose of identifying areas where improvement is necessary from the perspective of ships. Through this analysis, this paper identifies areas to be improved and proposes to improve the INF Code which can supplement the current regulatory regime for sea transport of radioactive material.

Current Distribution and Numerical Analysis of AC Losses on Multi-Layer HTS Cable (다층 고온 초전도 케이블의 전류 분포 및 교류손실 해석)

  • 김영석;이병성;장현만;곽민환;김상현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.452-455
    • /
    • 2000
  • Superconducting power cable is one of the most promising energy application of high-T$_{c}$ superconductors (HTS). A prototype HTS cable have been constructed multi-layer cable using Bi-2223 tape and tested. The AC transport losses under self field were investigated at 77K on the 19 filamentary tape and multi-layer HTS cables. And we carried out numerical analysis using bean model. The result shows that the total transport current of HTS cable in L$N_2$ was 475[A], and transport current passed through almost the outer layer (2-layer). Also, AC transport losses in outer layer of HTS cable was proportion to I$^2$ and higher than losses of inner layer. In case of Ip=Ic, calculated numerical loss density was concentrated on the edge of tape and most of loss density in cable was distributed outer layer more than inner layer. As magnetic distribution was concentrated on outer layer.r.

  • PDF

The characteristic research of a Bi-2223 wires by the Various Transport Current (수송전류에 따른 Bi-2223 선재의 특성연구)

  • 오정훈;배덕권;강형구;안민철;이상진;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.220-223
    • /
    • 2003
  • High-Tc superconducting(HT S) systems are commercialized by many study on high-Tc superconductor. For the successful commercialization of superconducting systems using Bi-2223 wires, the database on the degradation of critical current is essentially needed. In this paper, critical current variation of Bi-2223 wires according to the transport time was investigated. The degradation rate of critical current was also calculated. Solenoid type specimens have the length of 190cm Bi-2223 wire and double-pancake type specimens have the length of l0m wire were tested. Tested Bi-2223 wires are commercialized products of AMSC (American Superconductor) and Innost. When the transportation current was 95% of critical current, the degradation of critical current was appeared after 5 hours of transport time.

  • PDF

Effects of Thermal-Carrier Heat Conduction upon the Carrier Transport and the Drain Current Characteristics of Submicron GaAs MESFETs

  • Jyegal, Jang
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.11a
    • /
    • pp.451-462
    • /
    • 1997
  • A 2-dimensional numerical analysis is presented for thermal-electron heat conduction effects upon the electron transport and the drain current-voltage characteristics of submicron GaAs MESFETs, based on the use of a nonstationary hydrodynamic transport model. It is shown that for submicron GaAs MESFETs, electron heat conduction effects are significant on their internal electronic properties and also drain current-voltage characteristics. Due to electron heat conduction effects, the electron energy is greatly one-djmensionalized over the entire device region. Also, the drain current decreases continuously with increasing thermal conductivity in the saturation region of large drain voltages above 1 V. However, the opposite trend is observed in the linear region of small drain voltages below 1 V. Accordingly, for a large thermal conductivity, negative differential resistance drain current characteristics are observed with a pronounced peak of current at the drain voltage of 1 V. On the contrary, for zero thermal conductivity, a Gunn oscillation characteristic is observed at drain voltages above 2 V under a zero gate bias condition.

  • PDF

Transport current loss of YBCO Coated Conductor and Bi-2223 tape (Bi-2223 선재와 YBCO Coated Conductor 선재의 전송전류 손실 비교)

  • Lim Hyoungwoo;Lee Kwangyoun;Cha Gueesoo;Lee Jikwang;Park Chan
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1010-1012
    • /
    • 2004
  • AC loss is an important factor in the development of superconducting tapes and superconducting power applications. In this paper we measured and compared characteristics of BSCCO tape and YBCO Coated Conductor(YBCO CC). BSCCO tape was fabricated by PIT method. We measured critical current density and transport current loss of it. Also, YBCO CC tape consist of substrate. buffer, YBCO and metal layers. We measured critical current density on variations of external magnetic field and transport current loss of these cases. The results of measurement show that normalized critical current of YBCO CC is smaller then that of BSCCO tape in the external magnet field. According to the results. measured loss and calculated of the YBCO CC show the same tendency.

  • PDF

Analysis of transport current loss considering the conductive layer of YBCO wires (도전성이 높은 안정화층을 고려한 YBCO 선재의 전송전류 손실 해석)

  • Kang, Myung-Hun;Han, Byung-Wook;Jung, Du-Young;Lim, Hee-Hyun;Lim, Hyoung-Woo;Cha, Guee-Soo;Lee, Hee-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.191-193
    • /
    • 2006
  • YBCO wire has a metal substrate to improve the texture structure and highly conductive layers to increase the cryogenic stability. When AC current flows in the YBCO wire, magnetic field which is generated by the AC current magnetizes the metal substrate and induces the eddy current in the stabilizing layer. To examine the effect of the metal substrate and the conducting layer on the transport current loss of YBCO wire, this paper presents the transport current loss of YBCO wire which has metal substrate and conductive layer. YBCO wire with Ni-W substrate and copper layer were chosen as the model HTS wire for numerical calculation. Finite element method has been used to calculate the transport loss and the results of numerical calculation was compared with analytic calculation suggested by Norris.

  • PDF

Unusual Electrical Transport Characteristic of the SrSnO3/Nb-Doped SrTiO3 Heterostructure

  • De-Peng Wang;Rui-Feng Niu;Li-Qi Cui;Wei-Tian Wang
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.229-235
    • /
    • 2023
  • An all-perovskite oxide heterostructure composed of SrSnO3/Nb-doped SrTiO3 was fabricated using the pulsed laser deposition method. In-plane and out-of-plane structural characterization of the fabricated films were analyzed by x-ray diffraction with θ-2θ scans and φ scans. X-ray photoelectron spectroscopy measurement was performed to check the film's composition. The electrical transport characteristic of the heterostructure was determined by applying a pulsed dc bias across the interface. Unusual transport properties of the interface between the SrSnO3 and Nb-doped SrTiO3 were investigated at temperatures from 100 to 300 K. A diodelike rectifying behavior was observed in the temperature-dependent current-voltage (IV) measurements. The forward current showed the typical IV characteristics of p-n junctions or Schottky diodes, and were perfectly fitted using the thermionic emission model. Two regions with different transport mechanism were detected, and the boundary curve was expressed by ln I = -1.28V - 13. Under reverse bias, however, the temperature- dependent IV curves revealed an unusual increase in the reverse-bias current with decreasing temperature, indicating tunneling effects at the interface. The Poole-Frenkel emission was used to explain this electrical transport mechanism under the reverse voltages.