• Title/Summary/Keyword: Current transient

Search Result 1,272, Processing Time 0.027 seconds

Simulation of Miniaturized n-MOSFET based Non-Isothermal Non-Equilibrium Transport Model (디바이스 시뮬레이션 기술을 이용한 미세 n-MOSFET의 비등온 비형형장에 있어서의 특성해석)

  • Choi, Won-Cheol
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.3
    • /
    • pp.329-337
    • /
    • 2001
  • This simulator is developed for the analysis of a MOSFET based on Thermally Coupled Energy Transport Model(TCETM). The simulator has the ability to calculate not only stationary characteristics but also non - stationary characteristics of a MOSFET. It solves basic semiconductor devices equations including Possion equation, current continuity equations for electrons and holes, energy balance equation for electrons and heat flow equation, using finite difference method. The conventional semiconductor device simulation technique, based on the Drift-Diffusion Model (DDM), neglects the thermal and other energy-related properties of a miniaturized device. I, therefore, developed a simulator based on the Thermally Coupled Energy Transport Model (TCETM) which treats not only steady-state but also transient phenomena of such a small-size MOSFET. In particular, the present paper investigates the breakdown characteristics in transient conditions. As a result, we found that the breakdown voltage has been largely underestimated by the DDM in transient conditions.

  • PDF

The Stablity and Transient Response in the Buck-Boost DC-DC Converter (승강엽형 DC-DC 콘버어터의 안정도 및 과도 응답)

  • 김희준;김순창
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.421-430
    • /
    • 1991
  • This paper investigated the errect of the right-half-plane zero on stability in the buck-boost DC-DC converter which is one type of the switching regulator and the stability region for the variation of the output current is obtained by evaluating the feedback gain. And it is clarified that the damping ratio decreases gradually by increase of the feedback loop gain and the regulation system of the converter becomes unstable, and from the transient response analysis we obtainedthe stability region about this converter. From above result it is known that the stability decreases by the existence of the right-half-plane zero. For the improvement of stability, we carried out one pole compensation in feedback circuit and obtained the avaliable stability region in relation to the gain bandwidth product from the stability and transient response analysis. These results were established experiment.

  • PDF

A Nonlinear Analytic Function Expansion Nodal Method for Transient Calculations

  • Joo, Han-Gyu;Park, Sang-Yoon;Cho, Byung-Oh;Zee, Sung-Quun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.79-86
    • /
    • 1998
  • The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized. In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of applications to the NEACRP PWR rod ejection benchmark problem.

  • PDF

Transient Response Improvement of Multiple Model/Controller IMC Using Recurrent Neural Networks (재귀신경망을 이용한 다중모델/제어기 IMC의 과도 응답 개선)

  • O, Won-Geun;Jo, Seong-Eon;So, Ji-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.7
    • /
    • pp.582-588
    • /
    • 2001
  • The Multiple Model/Controller IMC(MMC-IMC) is a model-based control method which uses a set of model/controller pairs rather than a single model/controller to handle all possible operating conditions in the IMC control structure. During operation, one model/controller pair that best fit, for current plant situation is chosen by the switching algorithm. The major drawback of the switching controller is the bad transient performance due to the model error and the use fo linear controller for nonlinear plants. In this paper, we propose a method that transient response of the MMC-IMC using two recurrent neural networks. Simulation result shows that the proposed method represents better performance than the usual MMC-IMC`s.

  • PDF

Oscillation Frequency Detecting Technique for Transmission Line Protection using Prony's Analysis (프로니해석법을 이용한 공진 주파수 검출 알고리즘)

  • Cho, Kyung-Rae;Kim, Soong-Soo;Park, Jong-Koun;Hong, Jun-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.509-512
    • /
    • 1995
  • The relaying algorithm to calculate the fault distance from only transient signal at faults in T/L is presented. In this paper. At faults the oscillation frequency components exist in both voltage and current and these components minimize the input impedance shown in fault point. The equivalent source impedance shown in relaying point is needed to calculate the fault distance using these components. To source impedance, the reflection coefficient between forward wave and backward and the Prony's analysis is also employed to extract the oscillation frequency component from transient signals. The case study show that the new distance relaying algorithm satisfies the high operation speed and high accuracy even if the algorithm uses only transient signals.

  • PDF

Transient Current Suppression Scheme for Bi-Directional DC/DC Converters in 42V Automotive Power Systems

  • Lee, Woo-Cheol;Yoo, Chang-Gyu;Lee, Kyu-Chan;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.517-525
    • /
    • 2009
  • 42V electrical power systems are on their way to replacing the present l4V systems in automobiles and 42V/14V dual voltage systems have been proposed to provide backward compatibility with the existing components for the 14V systems. A synchronous buck/boost converter is an attractive topology for 42V/14V dual voltage systems since it offers the possibility of bi-directional operation without additional components. In this paper, transient currents generated during converter startup or changes in operation modes between buck and boost are analyzed and a cost effective solution to remove the transient currents is proposed. The validity of the proposed control strategy is investigated through simulation and experiment with bi-directional converters.

The Pulsed Id-Vg methodology and Its Application to the Electron Trapping Characterization of High-κ gate Dielectrics

  • Young, Chadwin D.;Heh, Dawei;Choi, Ri-No;Lee, Byoung-Hun;Bersuker, Gennadi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.79-99
    • /
    • 2010
  • Pulsed current-voltage (I-V) methods are introduced to evaluate the impact of fast transient charge trapping on the performance of high-k dielectric transistors. Several pulsed I-V measurement configurations and measurement requirements are critically reviewed. Properly configured pulsed I-V measurements are shown to be capable of extracting such device characteristics as trap-free mobility, trap-induced threshold voltage shift (${\Delta}V_t$), as well as effective fast transient trap density. The results demonstrate that the pulsed I-V measurements are an essential technique for evaluating high-$\kappa$ gate dielectric devices.

A Fault Detection and Self-Recovery System for Space-Borne Dual Ring Counters (우주용 중복구조 링 카운터를 위한 고장 진단 및 자가 복구 시스템)

  • Kwak, Seong Woo;Yang, Jung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.120-126
    • /
    • 2013
  • This paper proposes a novel scheme of fault detection and self-recovery for space-borne dual ring counters subject to transient faults. The considered ring counter is equipped with hardware redundancy, but it has a limited output domain where direct access to the current state is unavailable. We employ the theory of corrective control to detect any transient fault occurring to the counter bits and to realize immediate self-recovery of the ring counter back to the normal state. The structure of the fault-tolerant controller is designed to be minimal regardless of the counter size. To validate the applicability, we implement the proposed system on a commercial FGPA board.

Design and Fabrication of a Transient Voltage Stocking Device for Electrical Mains (전원회로용 과도전압 차단장치의 설계 및 제작)

  • 이종혁;송재용;길경석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.486-489
    • /
    • 1999
  • This paper deals with the design rule and performance results of the transient voltage blocking devices (TBD) for low-voltage mains on shipboard. The proposed TBD consists of metal oxide varistors (MOV) and L-C filter to improve noise-elimination performance. Three kinds of TBDs are fabricated and tested by using a combination surge generator which can produce the standard impulse current of 8/20${\mu}$s 2.1kA. As a reults, the proposed TBD with series L-C filter has more excellent transient blocking and noise reduction performance than the conventional TBDs.

  • PDF

A Study on the Development of a Transient Voltage Stocking Device for Signal and Telecommunication Lines (신호.통신회로용 과도전압 차단장치 개발에 관한 연구)

  • 송재용;이종혁;길경석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.490-493
    • /
    • 1999
  • Due to the miniaturization of electrical components and assembles on signal and telecommunication circuits, transient overvoltages caused by switching operation or lightning surge has become more interesting concern to the field of electrical engineering. This paper describes the development of transient voltage blocking devices (TBDs) that can protect sensitive signal and telecommunication devices from overvoltages. Two kinds of TBDs are designed and tested by using a combination surge generator which can produce the standard impulse current of 8/20${\mu}$s 2.1kA according to the IEC 1000-4-5 standard. From the simulation and experimental reults, it is confirmed that the proposed TBD has an enough protection performance in low insertion loss and tight clamping voltage.

  • PDF