• Title/Summary/Keyword: Current sharing controller

Search Result 55, Processing Time 0.022 seconds

A Study of Parallel Operation of Module Power using CAN Communication (CAN통신을 이용한 모듈전원의 병렬운전에 관한 연구)

  • Park, Seong-Mi;Lee, Sang-Hyeok;Park, Sung-Jun;Lee, Bae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3603-3609
    • /
    • 2011
  • In this paper, we proposes new load-sharing algorism for equal current division using CAN communication. Proposed algorithm is different from conventional analog method, it performed strong Load-sharing using bi-direction high speed communication. Each modules constitution on independence controller (voltage controller, electric current controller). In parallel system prototype, each module have controller and performed load-sharing according to master module integral value. Also additional controller use for getting each module situations that fault situation of module and fault locate of module. we implemented high efficient load-sharing and redundancy. In this paper, we verify the validity of proposed algorithm using PSIM program and prototype.

The Parallel Operation Control of Static UPSs (정지형 UPS의 병렬운전 제어)

  • Min, Byeong-Gwon;Won, Chung-Yun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.7
    • /
    • pp.363-368
    • /
    • 1999
  • The parallel operation system of multiple uninterruptible power supplies(UPSs) is used to increase power capacity of the system or to secure higher reliability at critical loads. In the parallel operation of the two UPSs, the load-sharing control to maintain the current balance between them is a key technique. Because a UPS has low output impedance and quick response characteristics, in case of an unbalanced load inverter output current changes very rapidly and thereby can instantaneously reach an overload condition. In this study, high precise load-sharing controller is proposed and implemented for the parallel operation system of two UPSs with low impedance characteristics and this controller controls the frequency and the voltage to minimize the active power component and the reactive power component which are gotten from the current difference between two UPSs. And then a good performance of the proposed method is verified by experiments in the parallel operation system with two 40KVA UPSs.

  • PDF

Unbalanced Power Sharing for Islanded Droop-Controlled Microgrids

  • Jia, Yaoqin;Li, Daoyang;Chen, Zhen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.234-243
    • /
    • 2019
  • Studying the control strategy of a microgrid under the load unbalanced state helps to improve the stability of the system. The magnitude of the power fluctuation, which occurs between the power supply and the load, is generated in a microgrid under the load unbalanced state is called negative sequence reactive power $Q^-$. Traditional power distribution methods such as P-f, Q-E droop control can only distribute power with positive sequence current information. However, they have no effect on $Q^-$ with negative sequence current information. In this paper, a stationary-frame control method for power sharing and voltage unbalance compensation in islanded microgrids is proposed. This method is based on the proper output impedance control of distributed generation unit (DG unit) interface converters. The control system of a DG unit mainly consists of an active-power-frequency and reactive-power-voltage droop controller, an output impedance controller, and voltage and current controllers. The proposed method allows for the sharing of imbalance current among the DG unit and it can compensate voltage unbalance at the same time. The design approach of the control system is discussed in detail. Simulation and experimental results are presented. These results demonstrate that the proposed method is effective in the compensation of voltage unbalance and the power distribution.

Design of Dual-channel Interleaved Phase-shift Full-bridge Converter

  • Che, Yanbo;Wang, Dianmeng;Liu, Xiaokun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1529-1536
    • /
    • 2017
  • A digital dual-channel interleaved phase-shift full-bridge converter is investigated in this paper, and its topology and principle are analyzed. To realize current sharing and stabilize the output voltage, a controller with current sharing loop and closed voltage loop is employed. In addition, current sharing will increase the output current fluctuation and a new digital interleaved driving technology is proposed to reduce the output current ripple. To verify the analysis, simulation and experiments are carried out, which shows the effectiveness of the proposed control strategies.

A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid (양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구)

  • Yun, Hyeok-Jin;Kim, Myoungho;Baek, Ju-Won;Kim, Ju-Yong;Kim, Hee-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

Analyzing and Designing a Current Controller for Circulating Current Reduction in Parallel Three-Phase Voltage-Source Inverters

  • Kim, Kiryong;Shin, Dongsul;Kim, Hee-Je;Lee, Jong-Pil
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.502-510
    • /
    • 2018
  • A circulating current is a major problem caused by directly connecting voltage-source inverters (VSIs) in parallel. This circulating current occurs as a zero-sequence current between the inverters by specific switch states. Several studies have presented alternatives using hardware and software methods. When coupled inductors (CIs) are employed for the high-frequency circulating current, a controller is required to prevent the low-frequency circulating current from saturating the CIs. In this study, the zero-sequence circulating current and its alternatives are investigated using hardware and mathematical description. A high-performance circulating current controller is proposed by applying a repetitive controller to the zero-sequence current control loop. The proposed controller can effectively minimize the low-frequency circulating current without any data sharing between the inverters in unfavorable conditions. It can also be applicable to the modular configuration of parallel three-phase VSIs. Experimental results verify the performance of the proposed controller.

Parallel operation of VISC system for 3[kw] solar cell (3[kw]급 태양전지 가상구현시스템의 병렬운전)

  • Lee S.Y.;Jeong B.H.;Oh B.W.;Lee B.I.;Choe G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.957-960
    • /
    • 2003
  • Many solar cell way need to be connected by series or parallel to extract the high power Especially, during parallel operation to reduce circulation current the individual converter has to share and control the load current. Generally, Current Sharing(CS) can be implemented using droop and active current sharing method. In this paper, one 3[KW] PWM converter was replaced as one 3[KW] solar cell array(3 parallels, each parallel has twenty single modules), two 3[KW] solar cell way Is Paralleled to generate 6[KW] power. Also each converter used voltage-current controller and Automatic MSCPM(Master-Slave Current-programming Method) for current sharing(AS).

  • PDF

Low-Voltage and High-Current DC Output Realized by Multiple Power Cells Based on Deadbeat and Automatic Current Sharing Control

  • Liu, Jinfeng;Zhang, Yu;Wang, Xudong;IU, Herbert Ho-Ching
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1575-1585
    • /
    • 2017
  • This paper presents a synchronous generator with a distributed system of multiple parallel three-phase power cells. This generator can immediately output high DC. Each power cell comprises three-phase windings and a three-phase synchronous rectification bridge with a deadbeat control of load power feedforward, which can improve the characteristics of dynamic response and reflect the load variance in real time. Furthermore, each power cell works well independently and modularly using the method of automatic maximum current sharing. The simulation and experimental results for the distributed controller of multiple power cells demonstrate that the deadbeat control method can respond quickly and optimize the quality of the energy. Meanwhile, automatic maximum current sharing can realize the validity of current sharing among power cells.

Load-Sharing Algorithm using Digital Parallel Communication (디지털 병렬 통신을 이용한 부하분담 알고리즘)

  • Park, Seong-Mi;Kim, Chun-Sung;Lee, Sang-Hyeok;Lee, Sang-Hun;Park, Sung-Jun;Lee, Bae-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.50-57
    • /
    • 2011
  • In this paper, we proposes a new load-sharing algorithm with a ATmega2560 based digital communication. Proposed algorithm is different from conventional analog method. The high speed communication digital control is performed. To apply the digital communication and real-time control for time-sharing token bus method, we implemented high efficient load-sharing and redundancy. Also this system make down the price by auto ID algorithm and system response is improved by controller's voltage and current integral value sharing. In parallel system prototype, each module have controller and performed load-sharing according to master module integral value. In this paper, we verify the validity of proposed algorithm using PSIM program and prototype.

Average Current Control for Parallel Connected Converters

  • Jassim, Bassim M.H.;Zahawi, Bashar;Atkinson, David J.
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1153-1161
    • /
    • 2019
  • A current sharing controller is proposed in this paper for parallel-connected converters. The proposed controller is based on the calculation of the magnitudes of system current space vectors. Good current distribution between parallel converters is achieved with only one Proportional-Integral (PI) compensator. The proposed controller is analyzed and the circulating current impedance is derived for paralleled systems. The performance of the new control strategy is experimentally verified using two parallel connected converters employing Space Vector Pulse Width Modulation (SVPWM) feeding a passive RL load and a 2.2 kW three-phase induction motor load. The obtained test results show a reduction in the current imbalance ratio between the converters in the experimental setup from 53.9% to only 0.2% with the induction motor load.