• 제목/요약/키워드: Current sensors

검색결과 1,276건 처리시간 0.032초

Computer vision and deep learning-based post-earthquake intelligent assessment of engineering structures: Technological status and challenges

  • T. Jin;X.W. Ye;W.M. Que;S.Y. Ma
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.311-323
    • /
    • 2023
  • Ever since ancient times, earthquakes have been a major threat to the civil infrastructures and the safety of human beings. The majority of casualties in earthquake disasters are caused by the damaged civil infrastructures but not by the earthquake itself. Therefore, the efficient and accurate post-earthquake assessment of the conditions of structural damage has been an urgent need for human society. Traditional ways for post-earthquake structural assessment rely heavily on field investigation by experienced experts, yet, it is inevitably subjective and inefficient. Structural response data are also applied to assess the damage; however, it requires mounted sensor networks in advance and it is not intuitional. As many types of damaged states of structures are visible, computer vision-based post-earthquake structural assessment has attracted great attention among the engineers and scholars. With the development of image acquisition sensors, computing resources and deep learning algorithms, deep learning-based post-earthquake structural assessment has gradually shown potential in dealing with image acquisition and processing tasks. This paper comprehensively reviews the state-of-the-art studies of deep learning-based post-earthquake structural assessment in recent years. The conventional way of image processing and machine learning-based structural assessment are presented briefly. The workflow of the methodology for computer vision and deep learning-based post-earthquake structural assessment was introduced. Then, applications of assessment for multiple civil infrastructures are presented in detail. Finally, the challenges of current studies are summarized for reference in future works to improve the efficiency, robustness and accuracy in this field.

다공성 동물성-콜라겐을 이용한 마찰전기 나노발전기 제작 및 특성평가 (Fabrication and Characterization of Triboelectric Nanogenerator based on Porous Animal-collagen)

  • 칸 세나와르 알리;라흐만 셰이크 압둘;김우영
    • 한국응용과학기술학회지
    • /
    • 제40권1호
    • /
    • pp.179-187
    • /
    • 2023
  • 바이오물질을 포함하는 나노발전기는 무공해 에너지원이며 생분해성 전자폐기물이라는 점에서 친환경적인 전자소자이다. 특히 바이오 물질이 바이오폐기물로부터 추출될 수 있다면 바이오폐기물의 양도 줄어들 것이다. 본 연구에서는 포유동물의 피부에 존재하는 동물성 콜라겐을 이용하여 마찰전기 나노발전기를 제작하였고 그 특성평가를 진행하였다. 마찰전기 나노발전기의 전기적 양극층은 회전 도포방법을 이용하여 콜라겐 막을 형성하여 구성하였으며, 주사전자현미경으로 막이 다공성임을 확인하였다. 제작한 마찰전기 나노발전기는 주기적인 기계적 운동에 의해 3 Hz에서 7 V부터 5 Hz에서 15 V의 개방전압과 5 Hz에서 3.8 ㎂의 단락전류를 보였다. 결론적으로, 콜라겐 함유 마찰전기 나노발전기는 센서와 같은 저전력 구동 장치의 전원이 될 수 있으며 전자 폐기물 감소에도 유용할 것으로 기대된다.

에이전트 기반의 NCW 전투모델링 시스템 설계 (Design of the Agent-based Network-Centric Warfare Modeling System)

  • 박세연;신하용;이태식;최봉완
    • 한국시뮬레이션학회논문지
    • /
    • 제19권4호
    • /
    • pp.271-280
    • /
    • 2010
  • 미래 전쟁은 네트워크중심전, 효과중심전, 동시통합전의 양상으로 전개될 것으로 예상된다. 그러나 현존하는 M&S 시스템은 과거의 플랫폼 중심전 모델에 맞는 단위 무기체계별 행동과 한정된 상호작용에 대한 모델만을 고려하고 있어, 분산된 센서, 통신자원, 슈터들이 네트워크를 통해 결합되어 상황을 공유/인식하고 유기적으로 운영되는 모습을 모델링하기에는 한계가 있다. 이에 따라 본 연구에서는 근래에 전투모델링 방법으로 그 실효성이 어느정도 인정되고 있는 에이전트 기반 모델링 및 시뮬레이션 방법을 이용하여 NCW 환경 하에서의 전투모델링 시스템을 설계 및 개발하였다. 기본 ABMS 방법론에서 NCW 효과 분석을 위한 개별 전투요소를 모델링하는 방법, 환경에 표현해야 하는 요소, 그리고 마지막으로 네트워크를 모델링하는 방법을 소개하고자 한다.

Development of a predictive functional control approach for steel building structure under earthquake excitations

  • Mohsen Azizpour;Reza Raoufi;Ehsan Kazeminezhad
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.187-198
    • /
    • 2023
  • Model Predictive Control (MPC) is an advanced control approach that uses the current states of the system model to predict its future behavior. In this article, according to the seismic dynamics of structural systems, the Predictive Functional Control (PFC) method is used to solve the control problem. Although conventional PFC is an efficient control method, its performance may be impaired due to problems such as uncertainty in the structure of state sensors and process equations, as well as actuator saturation. Therefore, it requires the utilization of appropriate estimation algorithms in order to accurately evaluate responses and implement actuator saturation. Accordingly, an extended PFC is presented based on the H-ifinity (H∞) filter (HPFC) while considering simultaneously the saturation actuator. Accordingly, an extended PFC is presented based on the H-ifinity (H∞) filter (HPFC) while considering the saturation actuator. Thus, the structural responses are formulated by two estimation models using the H∞ filter. First, the H∞ filter estimates responses using a performance bound (𝜃). Second, the H∞ filter is converted into a Kalman filter in a special case by considering the 𝜃 equal to zero. Therefore, the scheme based on the Kalman filter (KPFC) is considered a comparative model. The proposed method is evaluated through numerical studies on a building equipped with an Active Tuned Mass Damper (ATMD) under near and far-field earthquakes. Finally, HPFC is compared with classical (CPFC) and comparative (KPFC) schemes. The results show that HPFC has an acceptable efficiency in boosting the accuracy of CPFC and KPFC approaches under earthquakes, as well as maintaining a descending trend in structural responses.

불연속 개별시도 훈련에서 행동 반응을 지원하는 상태머신 설계 (State Machine design to support behavioral response in DTT protocol)

  • 윤혁;윤상석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.147-149
    • /
    • 2022
  • 본 논문은 불연속 개별시도 훈련을 모방하는 상호작용 로봇이 자폐아동 대상의 사회적 상호작용 훈련에 지원 가능한 상태머신 설계 방법론을 제안한다. 사회적 상호작용 훈련에 적용되는 로봇은 아동의 행동반응을 측정하는 센서들로부터 수신된 데이터를 처리하여 제공되는 훈련자극에 대한 반응을 정량적인 지표로 사용하게 된다. 여기서, 상태머신은 취득된 데이터의 상태를 분류한 후 불연속 개별시도 훈련의 후속 자극을 제공하는 정보로 사용된다. 공동 주의 훈련을 통하여, 지속가능한 불연속 개별시도 훈련의 횟수와 아동반응에 대한 데이터를 정량적으로 분류함으로써 근거기반의 치료정보로 활용될 수 있을 뿐만 아니라 원격지 모니터링을 수행하는 관찰자에게 현재 아동의 반응 상태를 제공함과 동시에 오인식 상황에 적절히 대응 가능함을 확인하였다.

  • PDF

라이다 기반 실내 자율주행 차량에서 신경망 학습을 사용한 성능평가 (Performance Evaluation Using Neural Network Learning of Indoor Autonomous Vehicle Based on LiDAR)

  • 권용훈;정인범
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권3호
    • /
    • pp.93-102
    • /
    • 2023
  • 클라우드를 통한 데이터 처리는 통신 과정에서 지연시간과 통신비용 증가 등 같은 많은 문제가 발생한다. 사물인터넷 분야에서는 이러한 문제를 해결하기 위해 엣지 컴퓨팅 연구가 활발히 이루어지고 있고, 대표적인 응용 분야로 자율주행이 있다. 실내 자율주행에서는 실외와 달리 GPS와 교통정보를 이용할 수 없기 때문에 센서를 활용하여 주변 환경을 인식해야 한다. 그리고 자원이 제약된 모바일 환경이기 때문에 효율적인 자율주행 시스템이 필요하다. 본 논문에서는 실내 환경에서 자율주행을 위해 신경망을 사용하는 기계학습을 제안한다. 신경망 모델은 LiDAR 센서에서 측정된 거리 데이터를 바탕으로 현재 위치에 가장 적절한 주행 명령을 예측한다. 신경망의 입력 데이터의 수에 따른 성능 평가를 수행하기 위해 6가지의 학습 모델을 설계하였다. 주행과 학습을 위해 Raspberry Pi 기반의 자율주행 차량을 제작하였고, 학습 데이터 수집과 성능평가를 위한 실내 주행 트랙을 제작하였다. 6가지의 신경망 모델들은 정확도와 응답시간 그리고 배터리 소모에 대한 성능 비교를 하였고, 입력 데이터의 수가 성능에 미치는 영향을 확인하였다.

마찰전기 셰이커: 전기 발생 마라카스 제작 및 특성평가 (Triboelectric Shaker: Fabrication and Characterization of Maracas-Type Generators)

  • 김혜준;김현승;정창규
    • 한국전기전자재료학회논문지
    • /
    • 제36권3호
    • /
    • pp.292-297
    • /
    • 2023
  • Triboelectric devices are attracting attention from researchers as self-powered electronic systems that can instantly convert mechanical input into electrical energy output. To improve triboelectric energy harvesting performance, increasing the number of contacts as well as the contact area has been carried out by numerous researchers. In this study, we design a shaker-type energy harvester which is called as maracas triboelectric generator (M-TEG), inspired by the structure of maracas, one of the musical percussion instruments. A tripod frame is inserted to the inside of a cylindrical case, which is a device with the electrodes of aluminum and copper. Then, the triboelectric energy harvesting characteristics between polypropylene (PP) balls and the electrodes are measured. The M-TEG with the frame generates the energy harvesting signals up to ~100 V and ~2.5 ㎂ due to larger contact area and numbers, which enhances the voltage and current output by 250% and 610% compared to that without the frame, respectively. This study presents the feasibility of self-powered sensors and toys using improved triboelectric energy performance with a low-cost and simple manufacturing process in the interesting structure.

1인 가구 안전사고 예방을 위한 Home IoT 센서 시스템 (Home IoT Sensor System for Prevent Safety Accidents in Single-person Household)

  • 백창대;김한호;차현석;손형민;김남호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.397-399
    • /
    • 2021
  • 사회적으로 1인 가구의 증가와 Home IoT 기술의 발전에 따라 주거 환경의 편의성 개선이 중요시된다. 또한 'COVID-19'에 의한 실내 활동 증가에 따라 1인 가구의 주거 편리성을 위한 제품 개발이 요구되고 있다. 이러한 추세로 그 전보다 현재 주거 환경과 상호작용이 수월해졌으며, 이에 따라 Home IoT 기술 발전의 필요성이 대두되고 있다. 따라서 본 논문은 온도, 습도, 미세먼지와 같이 실내 환경 유지에 필요한 정보를 모니터링하여 사용자와 상호작용 할 수 있도록 하였으며, 가스 누출 및 화재와 같은 안전사고 예방에 필요한 IoT 센서를 탑재하여 증가하는 실내 활동에 안전성을 향상하는 시스템을 제안하였다.

  • PDF

IoT 환경에서 빅데이터를 활용한 음주 운전 방지 시스템 개발 (Development of System for Drunk Driving Prevention using Big Data in IoT environment)

  • 신동진;황승연;김정준
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.69-74
    • /
    • 2022
  • 2019년 윤창호법을 통해 음주 운전 법 개정 후에도 전체 음주 사고 운전자 중 재범 점유율은 2021년 4.7%로 나타나 2018년 대비 0.5% 증가했다. 거기다 음주 운전은 알코올의 중독성으로 인해 쉽게 끊지 못하고, 다시 운전하는 경우가 많아 사고의 재범 확률이 매우 높다. 따라서 본 논문에서는 이를 방지하고자 알코올을 수동으로 경찰관이 측정하는 방법이 아닌 자체적인 센서를 이용하여 알코올이 측정되면, 자동차의 시동이 멈추게 되고, 현재 위치와 시간과 같은 관련 데이터들을 자동으로 저장한다. 직접 자동차에 개발을 할 수 없으므로 시뮬레이션 환경을 고려하여 본 시스템은 IoT 환경을 기반으로 아두이노 보드와 Firebase, GPS 등 다양한 기술과 센서를 융합하여 개발되었다.

배전반 안전사고 예측을 위한 빅데이터 자료 획득 방안 (A Method to Acquire Bigdata for Predicting Accidents on Power Switchboards)

  • 이현섭;김진덕
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.351-353
    • /
    • 2021
  • 최근 전력 수요가 급격히 증가하고 있는 가운데, 배전반의 관리 소홀로 인한 화재사고 빈번하게 발생하고 있다. 특히 산업용 및 전기자원 제어를 위한 배전반의 경우 심각한 문제를 초래할 수 있다. 그래서 전력 배전반 안전 관리를 위해 특정 조건 값이 만족하였을 때 발화를 제어하기 위한 2차 대응을 진행하지만, 이 상황의 경우 발화 이후 상당한 시간이 흘렀을 가능성이 크다는 문제점이 있다. 이 논문에서는 고압 위험요소가 있는 배전반의 부스바 접속부의 온도를 실시간 모니터링하고 지속적인 로그 데이터를 감시 및 학습하여 현재 상황에 능동적으로 대응할 수 있는 배전반 온도 및 전력 관제 시스템 개발을 위한 빅데이터 자료 획득 방안을 제시하고자 한다. 구체적으로 산재해 있는 다양한 센서로부터 주기적으로 온도, 전력 등의 데이터를 획득하고 관리하는 방안을 제시한다.

  • PDF