• 제목/요약/키워드: Current sensing method

검색결과 303건 처리시간 0.023초

위험 경사면의 변위 검출을 위한 지상 라이다의 활용 (Application of Terrestrial LiDAR for Displacement Detecting on Risk Slope)

  • 이근왕;박준규
    • 한국산학기술학회논문지
    • /
    • 제20권1호
    • /
    • pp.323-328
    • /
    • 2019
  • 기존에는 지형에 대한 3차원 공간정보 구축을 위해 주로 토털스테이션을 이용한 현황측량, 원격탐사, GNSS(Global Navigation Satellite System) 등의 방법이 주로 활용되어 왔다. 하지만 토털스테이션이나 GNSS는 대상지에 접근과 많은 관측을 요구하기 때문에 작업효율과 경제성이 떨어지며, 항공사진이나 인공위성영상은 지형의 3차원 형상을 취득하기 어렵다는 단점이 있다. 지상 LiDAR(Light Detection And Ranging)는 측정 대상물에 무수히 많은 레이저를 주사하여 X, Y, Z 좌표와 형상에 대한 정보를 얻을 수 있으며, 자료처리의 자동화가 가능한 장점이 있다. 본 연구에서는 지상 LiDAR를 이용하여 사면의 변위를 검출하고자 하였다. 연구대상 사면 3개소를 선정하고, 2016년과 2017년에 대상 사면에 대한 자료를 취득하였으며, 자료 처리를 통해 경사면의 형상과 단면에 대한 데이터를 생성할 수 있었다. 또한 생성된 데이터의 중첩분석을 통해 효과적으로 사면의 변위가 0.1m 이내임을 파악함으로써, 위험사면의 관리를 위한 지상 LiDAR의 활용 가능성을 제시하였다. 향후 주기적인 데이터 취득 및 분석이 이루어진다면 지상 LiDAR를 이용한 방법은 효과적인 위험사면 관리에 기여할 것이다.

가우시안 군집분석을 이용한 천리안 위성의 대기운동벡터 표적추적 알고리듬 개발 및 분석 (Development and Analysis of COMS AMV Target Tracking Algorithm using Gaussian Cluster Analysis)

  • 오유림;김재환;박형민;백강현
    • 대한원격탐사학회지
    • /
    • 제31권6호
    • /
    • pp.531-548
    • /
    • 2015
  • 위성영상을 이용하여 산출된 대기운동벡터(AMV)와 라디오존데 바람 관측 자료를 이용한 검증결과는 산출된 AMV가 지속적으로 관측 자료에 비해서 풍속이 약하게 나타나는 Slow Speed Bias(SSB)를 보여 주었다. 이러한 SSB는 표적추적, 표적선정, 그리고 고도할당 단계의 오차에 의해 야기될 수 있으며, 이 중 고도할당 단계의 오차는 SSB를 발생시키는 주된 요인으로 여겨진다. 그러나 최근 연구에서는 고도할당 단계의 개선만으로는 SSB 문제를 해결하는데 한계가 있음을 밝혔다. 그러므로 본 연구에서는 새로운 표적추적 알고리듬을 개발하여 SSB를 감소시킴으로서 기상청 현업 AMV 알고리듬의 성능을 개선하고자 하였다. 표적추적 단계의 오차는 표적 내에 다양한 시 공간 규모의 바람이 포함되어 벡터가 과도하게 평균된 움직임으로 계산되거나, 구름이 추적 시간동안 형태를 유지하지 못하고 변형되는 경우에 발생한다. 이러한 문제를 해결하기 위해 개발된 표적추적 알고리듬에서는 가우시안 군집분석(GMM)을 이용하여 변형이 적고 추적에 용이한 저온 군집을 표적으로 재선정하고, 이미지를 변형시켜 군집의 움직임을 보다 쉽게 추적할 수 있게 하였다. 또한 표적을 추적하기 위한 방법으로 거리제곱합 방법을 사용하였다. 개발된 알고리듬과 기존 COMS 알고리듬을 천리안 위성의 적외채널 영상에 적용하여 AMV를 산출하였으며, 이를 라디오존데 관측 자료와 비교 검증해 보았다. 제안된 알고리듬으로 산출된 AMV는 기존 알고리듬으로 산출된 AMV보다 평균 풍속이 $2.7ms^{-1}$증가함에 따라 SSB가 평균 29%까지 감소하는 개선된 결과를 보여주었다. 그러나 개발된 알고리듬으로 산출된 AMV는 중 하층의 정확도가 감소하였고, 기존 알고리듬에 비해 산출되는 AMV 벡터수가 약 40%까지 감소함을 보였다. 이에 따라 중 하층의 정확도 개선과 기존의 알고리듬과 비교하여 산출되는 벡터 개수가 감소하는 문제를 보완하기 위한 연구가 필요할 것으로 판단된다.

선형분광혼합화소분석을 이용한 서부지역 DMZ의 토지피복 변화 탐지 (Land-Cover Change Detection of Western DMZ and Vicinity using Spectral Mixture Analysis of Landsat Imagery)

  • 김상욱
    • 한국지리정보학회지
    • /
    • 제9권1호
    • /
    • pp.158-167
    • /
    • 2006
  • 본 연구는 DMZ 및 민통선지역의 토지피복 변화양상을 생태학적 측면에서 파악해보는데 목적을 두고 있다. 한반도 허리를 가르는 대상형 지역인 DMZ에 대하여 남북간 왕래가 잦은 서부지역에 대하여 토지피복특성을 파악해 보았는데, 비접근지역인 연구지역 특성상 본 연구에서는 위성영상자료를 활용하여 토지피복의 현황 및 변화특성을 파악해 보았다. '80년대 중반(Landsat TM, '87.05.20) 및 2000년대 초반의 영상(Landsat ETM+, '02.06.06)을 활용함으로써 최근 15년 동안 토지피복이 어떻게 변화했는지 파악하였으며, 생태적 가치가 큰 DMZ 지역의 토지피복 분류정확도를 높이기 위하여, 선형분광혼합화소분석(linear spectral mixture analysis : LSMA)을 이용하였다. 이 분석법은 하나의 화소를 단일한 지표물로 가정하여 영상을 처리하는 기존의 기법과 달리, 각 화소의 토지피복의 혼합정도를 세분화 한 후 대상지의 토지피복 특성을 가장 잘 반영하는 순수한 화소값 별로 분할영상(fraction image)을 생성하였는데, 본 연구에서는 식생, 토양, 수문의 3가지 화소에 대한 분할영상을 생성하였다. 분석결과 토지피복 가운데 산림지역의 면적이 가장 많은 감소를 가져왔는데, 남한지역의 경우 산림의 $39.04km^2$가, 북한지역은 $52.37km^2$가 다른 토지피복으로 변화되었다. 농경지의 경우 북한은 농경지 면적의 $56.15km^2$가 나대지로 변화되었는데, 이는 남한에 비하여 농경지 관리가 소홀하여 나대지 상태로 방치되고 있음을 알 수 있다. 공간적인 측면에서 볼 때, 민통선지역의 경우 전반적으로 토지피복의 변화가 나타나고 있으며, DMZ 내부의 경우도 장단반도 주변지역, 파주시 및 북한 판문군지역의 경우 그 변화가 민통선지역과 비슷한 양상을 보이고 있다.

  • PDF