• 제목/요약/키워드: Current limiting operation

검색결과 142건 처리시간 0.037초

고속 인터럽터를 적용한 한류기의 전류제한요소에 따른 특성 (Characteristics of a FCL Applying Fast Interrupter According to the Current Limitation Elements)

  • 임인규;최효상;정병익
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1752-1757
    • /
    • 2012
  • With the development in industry, power demand has increased rapidly. As consumption of power has increased, Demand for new power line and electric capacity has risen. However, in the event of fault, problems occur in extending the range of fault coverage and increasing fault current. In these reasons, protection devise is recognized as the prevention of an accident and fault current. This paper dealt with minimizing fault propagation and limiting fault current by adjusting fault current limiter (FCL) with fast interrupter. At this point, we compared and analyzed characteristics between non-inductive resistance and fault current which is limited by superconducting units. In normal state of the power system, power was supplied to the load, but when fault occurred, the interrupter was operated as CT which detected the over-current. Its operation made the limitation of fault current through a FCL. We concluded that the limiter using superconducting units was more efficient with the increase of power voltage. Superconducting fault current limiter with the fast interrupter prevented the spread of a fault, and improved reliability of power system.

22.9kV 초전도케이블/한류기의 국내 배전계통 적용을 위한 설계사양 고찰 (Specifications for Korean Power system application of 22.9kV HTS cable and FCL)

  • 이승렬;박종영;윤재영;양병모;이승엽;원영진;이병준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.266_267
    • /
    • 2009
  • 22.9kV HTS(High Temperature Superconducting) cable and SFCL(Superconducting Fault Current Limiter) will be installed to Icheon 154kV substation for real distribution power system operation in 2010. This paper proposes CLR (Current Limiting Resistance) specification of the SFCL and fault current condition fo the HTS cable for applying to Korean power system.

  • PDF

능동 클램프형 전류형 단상 풀브리지 DC-DC 컨버터의 동작 해석 (Analysis of Current Fed Full Bridge DC-DC Converter with Active Clamp)

  • 차한주;최순호;안치형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.205-207
    • /
    • 2007
  • Isolated Current fed full-bridge converter with active clamp is analyzed in this paper. An active clamp branch is used for limiting the voltage overshoot in the bridge switches and rectifier diodes. Zero voltage switching(ZVS) is also realized by using the energy stored in the transformer leakage inductance. To analyze the converter, 6 modes of operation are introduced and investigated. For each of the modes, voltage and current equations are derived together with corresponding equivalent circuits. 200W prototype dc-dc converter is assembled and verifies the effectiveness of the analysis and simulation.

  • PDF

전력계통 고주파 전류의 해석 (An analysis of harmonic components of current in the power system)

  • 우형주
    • 전기의세계
    • /
    • 제15권1호
    • /
    • pp.1-13
    • /
    • 1966
  • The harmonic components of a current in the power system have been known to be harmful to the sound operation of the system. Their occurrence is mainly due to the nonlinear characteristics of magnetic materials which are used in the system. This paper has, therefore, numerically analyze the harmonics from the relation between the magnetic characteristic curve and the harmonic components of a current in the R-L-C circuit. It also has suggested a new method of calculating the magnitudes and phase angles of the harmonic components by means of approximate formulas derived here. The method is expected to apply to the determination of harmonics-limiting conditions in case of the design of such power equipments as transformer, reactor and so on.

  • PDF

Brief review of the field test and application of a superconducting fault current limiter

  • Hyun, Ok-Bae
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제19권4호
    • /
    • pp.1-11
    • /
    • 2017
  • This article reviews the recent activities of field testing and application of superconducting fault current limiters (SFCL) based on high-temperature superconductors (HTS). The review particularly focuses on the trends in the field tests in terms of the technical aspects and commercial activities of the SFCLs. Stimulated by the discovery of HTS, numerous research and development activities have been conducted worldwide for SFCLs operating from distribution voltages to transmission voltages. Different types of SFCLs have been developed and field-tested. Consequently, more than 20 field tests and applications have been performed on real grids worldwide while supplying electric power to the customers. These field tests have not only provided the track records of the operation experiences including the problems and maintenance during operation, but also proved their current limiting capabilities against real faults, rendering this new technology highly viable. Through these activities, the following trends in the status of field testing and application are observed. Resistive-type SFCLs with HTS-coated conductors were dominantly used in the most recent field tests. This implies that the resistive type is technically more mature than the other types. Bus-bar coupling and transformer feeders were the major application locations. It is of importance that most of the field applications were conducted as R&D projects. A relevant change from the R&D stage to the application stage is shown as recently deployed SFCLs are expected to be under long-term operation and commercial service. Here, we review the installation of these SFCLs by substation. This review also discusses the recent activities for their commercial applications.

고온초전도체를 이용한 자속구속 리액터의 히스테리시스 특성 (Hysteresis Characteristics of Flux-Lock Reactor using HTSC)

  • 임성훈;최효상;고석철;이종화;박식;강형곤;한병성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.89-91
    • /
    • 2003
  • For the design to prevent the saturation of iron core and the effective fault current limitation, the analysis for the operation of the flux-lock type superconducting fault current limiter (SFCL) with consideration for the hysteresis characteristics of iron core is required. In this paper, the hysteresis characteristics of flux-lock reactor, which is an essential component of flux-lock type SFCL, was investigated. The hysteresis loss of iron core in flux-lock type SFCL does not happen due to its winding's structure especially in the normal state. From the equivalent circuit for the flux-lock type SFCL and the fault current limiting experiments, the hysteresis curves could be drawn. Through the analysis for both the hysteresis curves and the fault current limiting characteristics due to the number of turns for the 1st and 2nd winding, the increase of the number of turns in the 2nd winding of the flux-lock type SFCL had a role to prevent the iron core from saturation.

  • PDF

Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives

  • Thangaprakash, Sengodan;Krishnan, Ammasai
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.285-292
    • /
    • 2010
  • This paper presents a current mode integrated control technique (CM-ICT) using a modified voltage space vector modulation (MSVM) for Z-source inverter (ZSI) fed induction motor drives. MSVM provides a better DC voltage boost in the dc-link, a wide range of AC output voltage controllability and a better line harmonic profile. In a voltage mode ICT (VM-ICT), the outer voltage feedback loop alone is designed and it enforces the desired line voltage to the motor drive. An integrated control technique (ICT), with an inner current feedback loop is proposed in this paper for the purpose of line current limiting and soft operation of the drive. The current command generated by the PI controller and limiter in the outer voltage feedback loop, is compared with the actual line current, and the error is processed through the PI controller and a limiter. This limiter ensures that, the voltage control signal to the Z-source inverter is constrained to a safe level. The rise and fall of the control signal voltage are made to be gradual, so as to protect the induction motor drive and the Z-source inverter from transients. The single stage controller arrangement of the proposed CM-ICT offers easier compensation. Analysis, Matlab/Simulink simulations, and experimental results have been presented to validate the proposed technique.

국내 초전도 한류기 요구와 하이브리드 초전도 한류기 (Domestic Efforts for SFCL Application and Hybrid SFCL)

  • 현옥배;김혜림;임성우;심정욱;박권배;오일성
    • Progress in Superconductivity
    • /
    • 제10권1호
    • /
    • pp.60-67
    • /
    • 2008
  • We present domestic efforts for superconducting fault current limiter (SFCL) application in the Korea Electric Power Corporation (KEPCO) grid and pending points at issue. KEPCO's decision to upgrade the 154 kV/22.9 kV main transformer from 60 MVA to 100 MVA cast a problem of high fault current in the 22.9 kV distribution lines. The grid planners supported adopting an SFCL to control the fault current. This environment friendly to SFCL application must be highly dependent upon the successful development of SFCL having specifications that domestic utility required. The required conditions are (1) small size of not greater than twice of 22.9 kV gas insulated switch-gear (GIS), (2) sustainability of current limitation without the line breaking by circuit breakers (CB) for maximum 1.5 seconds. Also, optionally, recommended is (3) the reclosing capability. Conventional resistive SFCLs do not meet (1) $\sim$ (3) all together. A hybrid SFCL is an excellent solution to meet the conditions. The hybrid SFCL consists of HTS SFCL components for fault detection and line commutation, a fast switch (FS) to break the primary path, and a limiter. This characteristic structure not only enables excellent current limiting performances and the reclosing capability, but also allows drastic reduction of HTS volume and small size of the cryostat, resulting in economic feasibility and compactness of the equipment. External current limiter also enables long term limitation since it is far less sensitive to heat generation than HTS. Semi-active operation is another advantage of the hybrid structure. We will discuss more pending points at issues such as maintenance-free long term operation, small size to accommodate the in-house substation, passive and active control, back-up plans, diagnosis, and so on.

  • PDF

복합형 초전도 한류기의 한류특성에 따른 계통 적용성 검토 (Investigation of Network Application of the Hybrid SFCLs)

  • 최원준;심정욱;박권배;김영근;오일성;현옥배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.223-225
    • /
    • 2008
  • In order to apply SFCLs into electric power systems, the urgent issues to be settled are as follows, such as initial installation price, operation and maintenance cost due to ac loss of superconductor and the life of cryostat, and high voltage and high current problems. We designed novel hybrid SFCLs which combine superconductor and conventional electric equipments including a vacuum interrupter, an electro-magnetic contactor and a current limiting reactor. The main purpose of the hybrid SFCL is to drastically reduce total usage of superconductor by adopting current commutation method by use of the superconductor and the fast switch. According to protective coordination and performance, we investigated two concepts of Hybrid SFCLs. First is a half cycle fault current limitation type and second is a non-half cycle fault current limitation type. We concluded that the non-half cycle fault current limitation type is batter than the other.

  • PDF

하이브리드 방식을 적용한 배전급 초전도 한류기 개발 (Hybrid Superconducting Fault Current Limiters for Distribution Electric Networks)

  • 이방욱;박권배;심정욱;오일성;임성우;김혜림;현옥배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.102-103
    • /
    • 2007
  • In order to apply resistive superconducting fault current limiters into electric power systems, the urgent issues to be settled are as follows, such as initial installation price of SFCL, operation and maintenance cost due to ac loss of superconductor and the life of cryostat, and high voltage and high current problems. The ac loss and high cost of superconductor and cryostat system are main bottlenecks for real application. Furthermore in order to increase voltage and current ratings of SFCL, a lot of superconductor components should be connected in series and parallel which resulted in extreme high cost. Thus, in order to make practical SFCL, we designed novel hybrid SFCL which combines superconductor and conventional electric equipment including vacuum interrupter, power fuse and current limiting reactor. The main purpose of hybrid SFCL is to drastically reduce total usage of superconductor by adopting current commutation method by use of superconductor and high fast switch. Consequently, it was possible to get the satisfactory test results using this method, and further works for practical applications are in the process.

  • PDF