• 제목/요약/키워드: Current hysteresis control

Search Result 175, Processing Time 0.03 seconds

High performance operation of SRM by Resonant C-dump Converter (공진형 C-dump컨버터에 의한 SRM의 고성능 운전)

  • Jeong Kyun-Ha;Yoon Yong-Ho;Kim Se-Joo;Won Chung-Yuen;Kim Young-real
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.28-32
    • /
    • 2004
  • In this paper, the operational performance of SRM can be improved by using current hysteresis control method. This method maintains a generally flat current waveform. At the high speed, the current chopping capability is lost due to the development of the back-EMF. Therefore SRM operates in single pulse mode. By using zero-current switching and zero-voltage switching technique, the stress of power switches can be reduce in chopping mode. When the commutation from one phase winding to another phase winding, the current can be zero as fast as possible in this period because several times negative voltage of DC-source voltage produce in phase winding. This paper is compared to performance based on conventional C-dump converter topology and the proposed resonant C-dump converter topology Simulation and experimental results are presented to verify the effectiveness of the proposed circuit.

  • PDF

A Torque Ripple Reduction of Miniature BLDC using Instantaneous Voltage Control (초고속 소형 BLDC의 순시 전압 제어에 의한 토크 리플 억제)

  • Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.191-198
    • /
    • 2007
  • This paper proposes the instantaneous source voltage and phase current control for torque ripple reduction of a high speed miniature BLDC motor. As compared with general BLDC motor, a high speed miniature BLDC motor has a fast electrical time-constant. So the current and torque ripple are very serious in a conventional PWM switching during conduction period. In order to reduce the switching current ripple, instantaneously controlled source voltage is supplied to the inverter system according to the motor speed and load torque. In addition, the fast hysteresis current controller can keep the phase current In the limited band. The proposed method is verified by the computer simulation and experimental results.

Grid-Tied and Stand-Alone Operation of Distributed Generation Modules Aggregated by Cascaded Boost Converters

  • Noroozian, Reza;Gharehpetian, Gevorg;Abedi, Mehrdad;Mahmoodi, Mishel
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.97-105
    • /
    • 2010
  • This paper presents the modeling, control and simulation of an interconnection system (ICS) of cascaded distributed generation (DG) modules for both grid-tied and stand-alone operations. The overall configuration of the interconnection system is given. The interconnection system consists of a cascaded DC/DC boost converters and a DC/AC inverter. Detailed modeling of the interconnection system incorporating a cascaded architecture has not been considered in previous research. In this paper, suitable control systems for the cascaded architecture of power electronic converters in an interconnection system have been studied and modeled in detail. A novel control system for DC/DC boost converters is presented based on a droop voltage controller. Also, a novel control strategy for DC/AC inverters based on the average large signal model to control the aggregated DG modules under both grid-tied and stand-alone modes is demonstrated. Simulation results indicate the effectiveness of the proposed control systems.

Modeling and Analysis of 7-Phase BLDC Motor Drives (7상 BLDC 전동기 구동시스템 해석 및 설계)

  • Song, Sang-Hoon;Yoon, Yong-Ho;Lee, Byoung-Kuk;Won, Chung-Yuen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.575-582
    • /
    • 2014
  • In this paper, a simulation model for 7-phase BLDC motor drives for an Autonomous Underwater Vehicles (AUV) is proposed. A 7-phase BLDC motor is designed and the electrical characteristics are analyzed using FEA program and the power electronics drives for the 7-phase BLDC motor are theoretically analyzed and the actual implementation has been accomplished using Matlab Simulink. PI controller is used for verifying the validity of the proposed model and the informative results are described in detail.

DC/DC Converter Control for Photovoltaic/Fuel Cell Hybrid Generation system (태양광.연료전지 복합발전 시스템의 DC/DC 컨버터 제어 시뮬레이션)

  • Park, So-Ri;Park, Sang-Hoon;Won, Chung-Yuen;Jung, Yong-Chae;Kim, Yeong-Ryeol
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.353-356
    • /
    • 2008
  • This paper is proposed that the photovoltaic/fuel cell hybrid generation system for the stand-alone system. In case of the photovoltaic generation system, it depends on the weather condition, irradiation and so on... On the contrary, fuel cell has not this limitation. It can be interactive generation system between photovoltaic and fuel cell. This paper simulated stand-alone co-generation system based on the control of DC link. Moreover, 1[kw] BLDC motor system with speed and hysteresis current controller is used for the proposed system.

  • PDF

BLDC motor control method for hybrid electric vehicle (하이브리드 자동차용 BLDC 전동기 제어 방법)

  • Kang, Sin-Won;Jang, Jong-Hoon;Jeong, Ji-Ye;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.149-151
    • /
    • 2009
  • Hybrid electric vehicle has three operating mode, depending on the operation of the engine and electric motor. According to the speed range of BLDC motor, In hybrid traction mode, both the engine and electric motor deliver to drive train. Battery charge mode, the electric motor operates as generator and is driven by the engine to charge the batteries. In engine alone traction mode, the electric motor is do-energized, and vehicle is propelled by the engine alone. we propose hysteresis current control technique to maintain constant speed in the motor load torque at the reverse direction. The proposed method is verified by using Matlab Simulink software.

  • PDF

Direct Power Control of a DFIG in Wind Turbines to Improve Dynamic Responses

  • Jou, Sung-Tak;Lee, Sol-Bin;Park, Yong-Bae;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.781-790
    • /
    • 2009
  • This paper presents an implementation of a direct active and reactive power control for a doubly fed induction generator (DFIG), which is applied to a wind generation system as an alternative to the classical field-oriented control (FOC). The FOC has a complex control structure that consists of a current controller, a power controller and frame transformations. The performance of the FOC depends highly on parameter variations of the rotor and stator resistances and the inductances. The proposed direct power control (DPC) method produces a fast and robust power response without the need of complex structure and algorithms. One drawback, however, is its high power ripple during a steady state. In this paper, active and reactive power controllers and space-vector modulation (SVM) are combined to replace hysteresis controllers used in the original DPC drive, resulting in a fixed switching frequency of the power converter. Simulation results with the FOC and DPC for a 3kW DFIG are given and discussed, and the experimental results of a test involving identical machines are presented to illustrate the feasibility of the proposed control strategy.

Position Control of Induction Motor Using the Sliding Mode PID Control Method (슬라이딩 모드 PID 제어법을 이용한 유도 전동기의 위치제어)

  • Lee, Yoon-Jong;Kim, Hee-Jun;Son, Young-Dae;Jang, Bong-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.341-345
    • /
    • 1990
  • This paper presents the three section sliding mode control algorithm based on hysteresis current control add indirect field oriented control method, and applies it to the position control of induction motor. The three section sliding trajectories are defined in such a way that the system responds following a max acceleration line, then a max speed line, and finally a max deceleration line. This control scheme solves the problem of robustness loss during the reaching phase that occurs in conventional VSC strategy, and ensures the stable sliding mode and robustness enhancement throughout an entire response. Also, the PID controller operating in parallel is adopted to eliminate the sliding mode's collapse phenomenon near the origin caused by steady state chattering phenomenon Digital simulation results confirm that the dynamic performance of the system is insensitive to parameter variations and disturbances.

  • PDF

A Study on a Digital Amplifier.Controller for Proportional Control Valve (비례제어밸브용 디지털 앰프.컨트롤러에 대한 연구)

  • Lee, J.C.;Koh, J.U.;Kwon, T.H.;Shin, H.B.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2011
  • This study presents the design of digital amplifier.controller for a proportional control valve and the development of PID discrete control scheme by using RCP(Rapid Controller Prototyping) system. RCP system is the device to embed the control code developed in PC into the microcontroller on-site. Ramp input test using the digital amplifier.controller developed in this study was carried out for the proportional control valve of domestic production and Bosch Rexroth respectively. The instability problem occurred around maximum displacement of localized valve spool at ramp input test was solved by supplementing offset current to the duty ratio of PWM(Pulse Width Modulation) driving signal to the solenoid. The comparison of test results between localized proportional control valve and Bosch Rexroth's product shows that the characteristics obtained by ramp input test and static flow gains are alike each other. Two valves are about the same in dead bands and hysteresis characteristics.

A Studies for Sequential Mode Change Control Algorithm of the Parallel Dual Converter of Using Thyristor for Supplying the Urban Railway DC Power (도시철도의 직류전력 공급을 위한 사이리스터를 사용한 병렬 듀얼 컨버터의 순차적 모드 전환 제어 알고리즘에 대한 연구)

  • Han, Sung-Woo;Kim, Sung-An;Cho, Yun-Hyun;Byun, Gi-Sig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.511-519
    • /
    • 2016
  • This paper is proposed control algorithm for the using thyristor of the parallel dual converter for Urban railway power supply in order to return the regenerative power generated by regenerative braking in urban railway train. Conventional control algorithm of Thyristor dual converter for urban railway power supply has voltage variation within a control range of hysteresis band. The purposed control algorithm of the parallel thyristor dual converter is to maintain a constant voltage without voltage variation in accordance with variable load through the Sequential mode change. And the control algorithm need calculating optimum initial firing angle to consider magnitude of the load current slope. For this purpose, Proposed algorithm for sequential conversion mode of the dual converter was verified by applying for the simulation.