• Title/Summary/Keyword: Current doubler circuit

Search Result 38, Processing Time 0.02 seconds

A Charge Pump with Improved Charge Transfer Capability and Relieved Bulk Forward Problem (전하 전달 능력 향상 및 벌크 forward 문제를 개선한 CMOS 전하 펌프)

  • Park, Ji-Hoon;Kim, Joung-Yeal;Kong, Bai-Sun;Jun, Young-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.137-145
    • /
    • 2008
  • In this paper, novel CMOS charge pump having NMOS and PMOS transfer switches and a bulk-pumping circuit has been proposed. The NMOS and PMOS transfer switches allow the charge pump to improve the current-driving capability at the output. The bulk-pumping circuit effectively solves the bulk forward problem of the charge pump. To verify the effectiveness, the proposed charge pump was designed using a 80-nm CMOS process. The comparison results indicate that the proposed charge pump enhances the current-driving capability by more than 47% with pumping speed improved by 9%, as compared to conventional charge pumps having either NMOS or PMOS transfer switch. They also indicate that the charge pump reduces the worst-case forward bias of p-type bulk by more than 24%, effectively solving the forward current problem.

Implementation of an Interleaved AC/DC Converter with a High Power Factor

  • Lin, Bor-Ren;Lin, Li-An
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.377-386
    • /
    • 2012
  • An interleaved bridgeless buck-boost AC/DC converter is presented in this paper to achieve the characteristics of low conduction loss, a high power factor and low harmonic and ripple currents. There are only two power semiconductors in the line current path instead of the three power semiconductors in a conventional boost AC/DC converter. A buck-boost converter operated in the boundary conduction mode (BCM) is adopted to control the active switches to achieve the following characteristics: no diode reverse recovery problem, zero current switching (ZCS) turn-off of the rectifier diodes, ZCS turn-on of the power switches, and a low DC bus voltage to reduce the voltage stress of the MOSFETs in the second DC/DC converter. Interleaved pulse-width modulation (PWM) is used to control the switches such that the input and output ripple currents are reduced such that the output capacitance can be reduced. The voltage doubler topology is adopted to double the output voltage in order to extend the useable energy of the capacitor when the line voltage is off. The circuit configuration, principle operation, system analysis, and a design example are discussed and presented in detail. Finally, experiments on a 500W prototype are provided to demonstrate the performance of the proposed converter.

Dickson Charge Pump with Gate Drive Enhancement and Area Saving

  • Lin, Hesheng;Chan, Wing Chun;Lee, Wai Kwong;Chen, Zhirong;Zhang, Min
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1209-1217
    • /
    • 2016
  • This paper presents a novel charge pump scheme that combines the advantages of Fibonacci and Dickson charge pumps to obtain 30 V voltage for display driver integrated circuit application. This design only requires four external capacitors, which is suitable for a small-package application, such as smart card displays. High-amplitude (<6.6 V) clocks are produced to enhance the gate drive of a Dickson charge pump and improve the system's current drivability by using a voltage-doubler charge pump with a pulse skip regulator. This regulation engages many middle-voltage devices, and approximately 30% of chip size is saved. Further optimization of flying capacitors tends to decrease the total chip size by 2.1%. A precise and simple model for a one-stage Fibonacci charge pump with current load is also proposed for further efficiency optimization. In a practical design, its voltage error is within 0.12% for 1 mA of current load, and it maintains a 2.83% error even for 10 mA of current load. This charge pump is fabricated through a 0.11 μm 1.5 V/6 V/32 V process, and two regulators, namely, a pulse skip one and a linear one, are operated to maintain the output of the charge pump at 30 V. The performances of the two regulators in terms of ripple, efficiency, line regulation, and load regulation are investigated.

Design and Analysis of Resonant Bidirectional AC-DC Converter using Dual Half-Bridge Converter (듀얼 하프브릿지를 이용한 공진형 양방향 AC-DC 전력변환기 해석 및 설계)

  • Byen, Byeng-Joo;Choi, Jung-Muk;Han, Dong-Hwa;Lee, Young-Jin;Seo, Hyun-Uk;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.184-191
    • /
    • 2013
  • In this paper, bidirectional AC-DC converter using dual half-bridge converter is proposed. A transformer leakage inductance in the dual half-bridge converter is used for making resonance with the capacitor of the voltage-doubler, which can help the switched current to be sinusoidal without extra inductive component and also the switching loss can be reduced through operation such as ZVS, ZCS. Both circuit analysis and design guideline are described, and also the feasibility for the proposed converter is shown through the hardware implementation and the experimental results.

Development of Electronic Ballast for Automotive HID lamp using Holt Bridge Inverter (Half Bridge 구조를 이용한 자동차 헤드라이트용 전자식 안정기 개발)

  • 조계현;박종연;박재일
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.10-16
    • /
    • 2003
  • An electronic ballast for driving automotive HID lamps is presented. The circuit topology is composed of a fly back converter, a half bridge inverter, and igniter using voltage doubler. A prototype was developed and tested on a 35W lamp with a 12V input voltage. To avoiding acoustic resonance the half bridge inverter is operated at 400Hz and provided a squared-wave voltage source to the lamp. The transient and steady state characteristics of the tested HID lapm are measured and analyzed.

Development of Planar Transformer and SiC Based 3 kW High Power Density DC-DC Converter for Electric Vehicles (플라나변압기와 SiC 기반의 전기자동차용 3kW 고전력밀도 DC-DC 컨버터 개발)

  • Kim, Sangjin;Suk, Chaeyoung;Hakim, Ramadhan Muhammad;Choi, Sewan;Ryu, Byoungwoo;Park, Sanghun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.112-119
    • /
    • 2021
  • This study proposes a design method of high-power-density and high-efficiency low-voltage DC-DC converters using SiC MOSFET and the optimized planar transformer design procedure based on the figure-of-merit. The secondary rectifying circuit of the phase-shifted full-bridge converter is compared to achieve high power density and high efficiency, and the phase-shifted full bridge converter with a current-doubler rectifier is selected. The planar transformer is designed by the proposed optimized design procedure and verified by FEA simulation. To validate the proposed design method, experimental results from a 3 kW prototype are provided. The prototype achieved 95.28% maximum efficiency and a power density of 2.98 kW/L.

Design of the self-oscillation UV flash lamp power supply and the characteristic of its operation using self-resonance of the transformer (트랜스포머의 자가 공진(Self-Resonance)특성을 이용한 자가 발진(Self-Oscillation) UV(Ultra Violet) 발생 플래시램프 전원장치설계 및 그 동작 특성)

  • Kim, Shin-Hyo;Cho, Dae-Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.48-55
    • /
    • 2014
  • These Xenon flashlamp power supply for Ultra Violet has converter with high voltage conversion ratio. General model is composed of transformer with high voltage conversion ratio and voltage doubler rectifier circuit. Purpose of power supply leads dielectric breakdown of Xenon flashlamp and passes current rapidly. When passing current, it has to limit current to avoid over-heat, damage of electrode and acceleration of gas oxidation which are cause of performance degradation of lamps. Generally, inductors and resistors, which are called as "Ballast," are used to limit currents. Generally, Transformer has high turn ratio to make high voltages. But we can get high voltages using the transformer with low turn ratio which is driven with self resonance. Also, an advantage of self resonance is to make a circuit simply through impedance of transformer in resonance frequency which filters output voltage. As using an unique impedance of transformer, the circuit does not need other impedance elements like the ballast. So the power supply assures high efficiency of the arc discharge.

Pulse Width and Pulse Frequency Modulated Soft Commutation Inverter Type AC-DC Power Converter with Lowered Utility 200V AC Grid Side Harmonic Current Components

  • Matsushige T.;Ishitobi M.;Nakaoka M.;Bessyo D.;Yamashita H.;Omori H.;Terai H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.484-488
    • /
    • 2001
  • The grid voltage of commercial utility power source hi Japan and USA is 100rms, but in China and European countries, it is 200rms. In recent years, In Japan 200Vrms out putted single phase three wire system begins to be used for high power applications. In 100Vrms utility AC power applications and systems, an active voltage clamped quasi-resonant Inverter circuit topology using IGBTs has been effectively used so far for the consumer microwave oven. In this paper, presented is a half bridge type voltage-clamped high-frequency Inverter type AC-DC converter using which is designed for consumer magnetron drive used as the consumer microwave oven in 200V utility AC power system. This zero voltage soft switching Inverter can use the same power rated switching semiconductor devices and three-winding high frequency transformer as those of the active voltage clamped quasi-resonant Inverter using the IGBTs that has already been used for 100V utility AC power source. The operating performances of the voltage source single ended push pull type Inverter are evaluated and discussed for consumer microwave oven. The harmonic line current components In the utility AC power side of the AC-DC power converter operating at ZVS­PWM strategy reduced and improved on the basis of sine wave like pulse frequency modulation and sine wave like pulse width modulation for the utility AC voltage source.

  • PDF