• Title/Summary/Keyword: Current differential protection

Search Result 77, Processing Time 0.025 seconds

A Study on the Harmonics Effect of Ratio Differential Relay for Transformer Protection (변압기 보호용 비율차동계전기의 고조파 영향에 관한 연구)

  • Kim, Kyung-Chul;Hwang, Young-Rok;Kho, Hun;Jung, Dong-Won;Chung, Hae-Sung;Lee, Dong-Wook;Jeong, Chae-Ho;Lee, Jae-Yoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.99-105
    • /
    • 2014
  • Power transformers are applied throughout the power system to connect systems of different voltage to one another. Since a ratio differential relay offers high sensitivity in detection of internal faults in power transformers, it is widely used in the main protection system. The use of nonlinear devices such as rectifiers and other devices utilizing solid state switching have been increased in industry during recent years. For nonlinear loads, the load current is not proportional to the instantaneous voltage. This situation creates harmonic distortion on the system. The harmonic could differential relay misoperation if not recognized. This paper aims at analyzing and probing into the influences of harmonics on a ratio differential relay for power transformer protection.

Power Transformer Modeling and Transient Analysis using PSCAD (PSCAD를 이용한 전력용 변압기 모델링과 과도 해석)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.122-129
    • /
    • 2016
  • Current differential protection relaying with second harmonic restraint is the main protection for large capacity power transformer. PSCAD simulation program is widely used for modeling of dynamic varying transients phenomena. This paper deals with a power transformer model and transients analysis using PSCAD software to develop IED for power transformer. Simulation was carried out using a three phase 40MVA, 154/22.9kV, 60Hz, two-winding transformer with Y-Y connection used in actual fields. The paper analyzed transformer magnetizing inrush, external fault, and internal fault conditions with this model in the time domain. In addition, we performed an analysis in the frequency domain using FFT during several conditions.

Modified Differential Protection for Transformers in Wind Farms

  • George, Sujo P.;Ashok, S
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.78-88
    • /
    • 2018
  • The liberalization of electricity market and environmental concerns are the major driving forces for the development of Distributed Generation (DG). The mode of grid-connected wind power generation is becoming popular and has matured as a reliable DG technology. The voltage generated by the wind generator is stepped up to the higher voltage by the transformers before connecting to the grid. Operating algorithm of the differential relays for transformer protection used in the wind farms need to be modified to take care of the dynamic nature of fault current caused by the intermittent nature of the wind power. An algorithm for the differential relay is proposed in which dual slope characteristics are adjusted with varying fault level situation according to the wind generator in service as well as with the wind speed. A case study conducted for a typical wind farm shows that the proposed method avoids mal-operation of the differential relay in varying wind power conditions.

Agent based algorithm for detecting sympathetic inrush of a transformer (Agent 기반 변압기의 Sympathetic inrush 판단 방법)

  • Kang, Yong-Cheol;Lee, Byung-Eun;Park, Jong-Min;Hwang, Tae-Keun;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.234-235
    • /
    • 2006
  • The protection relay keeps electric power facilities by using signals of the voltage and current which are input and output terminals of each equipment. Each relay performances protection algorithm by using informations of own protecting zone. To prevent the mal-operation in inrush current, established transformer differential protection method uses the second harmonics as blocking signal. This method is not operate at the initial inrush. However, in case of the parallel operation, if the initial inrush is occurred in one transformer which is generated, the sympathetic inrush Is occurred in adjacent transformer. This paper approach the sympathetic inrush detecting algorithm of a transformer based on agent. Proposed algorithm, when inrush current occurred, distinguish sympathetic inrush or not by using differential current of adjacent transformer. This algorithm have the advantage of the distinguishing initial inrush and sympathetic inrush at operation of parallel transformer

  • PDF

A Percentage Current Differential Relay for Bus Protection Using a Compensation Algorithm Unaffected by a Remanent Flux (잔류자속에 무관한 보상 알고리즘을 적용한 모선보호용 전류차동 계전방식)

  • Kang, Yong-Cheol;Yun, Jae-Sung;Lim, Ui-Jai
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.308-310
    • /
    • 2003
  • This paper proposes a percentage current differential relaying algorithm for bus protection with a compensation algorithm of a CT. The compensating algorithm estimates the core flux at the start of the first saturation based on the value of the third-difference of the secondary current. It calculates the core flux and compensates distorted currents in accordance with the magnetization curve. The test results indicate that the algorithm can discriminate internal faults from external faults when the CT saturates. It can improve not only stability of the relay in the case of an external fault but sensitivity of the relay in the case of an internal fault.

  • PDF

Fuzzy Logic Based Relaying Using Flux-differential Current Derivative Cure for Power Transformer Protection

  • Kwon, Myoung-Hyun;Park, Chul-Won;Suh, Hee-Seok;Lee, Bock-Gu;Shin, Myong-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.5
    • /
    • pp.72-82
    • /
    • 1998
  • Power transformer protective relay should block the tripping during magnetizing imrush and rapidly operate the tripping during internal faults. But traditional approaches maloperate in the case of magnetizing inrush with low second harmonic component and internal faults with high second harmounic component. To enhance the fault detection sensitivities of conventional technuques, flux-differential current derivative curve by fuzzy theory approaches is used. This paper deals with fuzzy logic based protective relaying for power transformer. The proposed fuzzy based relaying algorithm consisits of flux-differential current derivative curve, harmonics restraint, and precentage differential characteristic curv. The proposed relaying was tested with relaying signals obtained from Salford EMTP simulation package and showed a fast and accurate trip operation.

  • PDF

A Current Differential Relaying Algorithm for Transmission Lines Using an Advanced Compensation Algorithm of CTs (보상알고리즘을 적용한 송전선 보호용 전류차동 알고리즘)

  • Kang, Y.C.;Lim, U.J.;Choi, J.W.;Jin, S.Y.;Cho, H.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.323-325
    • /
    • 2003
  • A current differential relay may maloperate for external faults with CT saturation and requires an additional method to cope with the problem. This paper proposes a current differential relaying algorithm for transmission line protection using an advanced compensation algorithm of the secondary current of CTs. The compensation algorithm is unaffected by a remanent flux. The proposed algorithm does not need an additional method for CT saturation and thus can achieve high stability for an external fault.

  • PDF

Hybrid Control and Protection Scheme for Inverter Dominated Microgrids

  • Xu, Xiaotong;Wen, Huiqing;Jiang, Lin;Hu, Yihua
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.744-755
    • /
    • 2017
  • With the high penetration of various sustainable energy sources, the control and protection of Microgrids has become a challenging problem considering the inherent current limitation feature of inverter-based Distributed Generators (DGs) and the bidirectional power flow in Microgrids. In this paper, a hybrid control and protection scheme is proposed, which combines the traditional inverse-time overcurrent protection with the biased differential protection for different feeders with different kinds of loads. It naturally accommodates various control strategies such as P-Q control and V-f control. The parameter settings of the protection scheme are analyzed and calculated through a fast Fourier transform algorithm, and the stability of the control strategy is discussed by building a small signal model in MATLAB. Different operation modes such as the grid-connected mode, the islanding mode, and the transitions between these two modes are ensured. A Microgrid model is established in PSCAD and the analysis results show that a Microgrid system can be effectively protected against different faults such as the single phase to ground and the three phase faults in both the grid-connected and islanded operation modes.

A Fault Analysis Program for a Digital Bus Protection Relay (모선보호용 디지털계전기의 고장분석 프로그램의 구현)

  • Son, Chun-Myung;Kang, Sang-Hee;Lee, Seung-Jae;Ahn, Yong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.246-248
    • /
    • 2001
  • In this paper, the fault analysis program that is convenient to analyse fault records of a digital relay and to set a digital relay is described. The key feature of this fault analysis program is as follows. - analysing fault records stored in a local PC and/or a digital relay - analysing events - setting a digital relay. This program is for a digital bus protection relay using a conventional variable percentage current differential relaying algorithm. So this program adds a function analysing the characteristic of each variable percentage current differential function and the connection state of the transmission lines at double-bus system.

  • PDF

Development of PCM Current Differential Relay Setting Module Using UML (UML(Unified Modeling Language)기법을 이용한 PCM전류차동계전기 정정모듈 개발)

  • Oh, T.W.;Oh, S.M.;Min, B.U.;Lee, S.J.;Choi, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.329-331
    • /
    • 2003
  • PROSET2000 that is integrated protective management system had developed and used in order to automate the setting process of protective relays in transmission system protection. PROSET2000 have database for relay setting and automated for relay setting program within. This paper proposed PCM current differential relay setting program point of Object Oriented Programming paradigm using Unified Modeling Language about additional relay in PROSET2000. Nevertheless each relay uses same current differential but setting method is different. This paper discribed different thing about setting method of each relay and evaluated more effective and corrective relay setting program using UML.

  • PDF